tìm giá trị lớn nhát cửa biểu thức;
A=X^2+5Y^2-4xy+6x-14y+15
B=13x^2+y^2+4xy-2y-16x+2015
tìm giá trị nguyên của n để :
n^4-5n^3-3n^2+17n-17 chia hết cho n-5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: \(3x-4y=0 \Leftrightarrow y=\dfrac{3x}{4}\)
Thay vào biểu thức A được:
\(A=x^2+\Bigg(\dfrac{3x}{4}\Bigg)^2 \)
Vì \(x^2 ≥0 ; \Bigg(\dfrac{3x}{4}\Bigg)^2 ≥0\)
\(\Rightarrow A_{min} \Leftrightarrow x=0 \Rightarrow y=0\)
Vậy \(\Rightarrow A_{min} \Leftrightarrow x=y=0\).
Để B đạt Min
\(\Rightarrow\frac{8-x}{x-3}=\frac{11-\left(x-3\right)}{x-3}=\frac{11}{x-3}-1\)đạt min
hay 11/ x-3 đạt min
GTLN của x-3 có số đối là 3-x là lớn nhất
--> 3-x nhỏ nhất
<--> 3-x = 1
x=2
Vậy................
\(P=\sqrt{3-x}+\sqrt{4-x}\)(ĐK: \(x\le3\))
\(\le\sqrt{3-3}+\sqrt{4-3}=1\)
Dấu \(=\)khi \(x=3\).
Bài 1 ) \(P=\left|x-1\right|+5\)
Ta có : \(\left|x-1\right|\ge0\)
\(\Leftrightarrow\left|x-1\right|+5\ge5\)
Dấu " = " xảy ra khi và chỉ khi \(x-1=0\)
\(\Leftrightarrow x=1\)
Vậy \(Min_P=5\Leftrightarrow x=1\)
Bài 2 ) \(Q=7-\left|5-x\right|\)
Ta có : \(\left|5-x\right|\ge0\)
\(\Rightarrow7-\left|5-x\right|\le7\)
Dấu " = " xảy ra khi và chỉ khi \(5-x=0\)
\(\Leftrightarrow x=5\)
Vậy \(Max_Q=7\Leftrightarrow x=5\)
\(\left|x-2\right|\ge0;y+5\ge0\Rightarrow\left|x-2\right|+\left|y+5\right|\ge0\)
\(\Rightarrow\left|x-2\right|+\left|y+5\right|-15\ge-15\)
Dấu "=" xảy ra tại x=2;y=-5
Ta có: A= \(\left|x-2\right|+\left|y+5\right|-15\)
\(\hept{\begin{cases}\left|x-2\right|\ge0\\\left|y+5\right|\ge0\end{cases}\Rightarrow\left|x-2\right|+\left|y+5\right|-15\ge-15}\)
Để A nhỏ nhất thì Min (A) = -15 <=> x=2; y= -5
(Min là giá trị nhỏ nhất)
Áp dụng BĐT Cauchy - Schwarz dạng engle ta có:
\(A=\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{\left(1+1+1\right)^2}{1+x+1+y+1+z}=\frac{9}{3+\left(x+y+z\right)}\ge\frac{9}{3+3}=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=1\)
Vậy Min A = 3/2 khi x = y = z = 1