Tìm giá trị lớn nhất của
\(C=1,5-\left|x-1,1\right|\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : |x + 1,5| \(\ge0\forall x\in R\)
Nên |x + 1,5| - 4,5 \(\ge-4,5\forall x\in R\)
Vậy GTNN của biểu thức là -4,5 khi và chỉ khi x = -1,5
Ta có : |x - 1,1| \(\ge0\forall x\in R\)
Nên 3 - |x - 1,1| \(\le3\forall x\in R\)
Vậy GTLN của C là 3 khi và chỉ khi x = 1,1
\(B=1,5+\left|2-x\right|\)
Có: \(\left|2-x\right|\ge0\)
\(\Rightarrow1,5+\left|2-x\right|\ge1,5\)
Dấu = xảy ra khi: \(2-x=0\Rightarrow x=2\)
Vậy: \(Min_A=1,5\)tại \(x=2\)
\(A=\left|3,7-x\right|+2,5\ge2,5\)
\(MinA=2,5\Leftrightarrow3,7-x=0\Rightarrow x=3,7\)
\(\left|x+1,5\right|-4,5\ge-4,5\)
\(MinB=-4,5\Leftrightarrow x+1,5=0\Rightarrow x=-1,5\)
\(C=1,5-\left|x+1,1\right|\le1,5\)
\(MinC=1,5\Leftrightarrow x+1,1=0\Rightarrow x=-1,1\)
a) Vì I3,7 - xI có GTNN = 0 => x = 0 (để I3,7 - xI có GTNN) => GTNN của I3,7 - xI + 2,5 là 2,5
b) Cách giải giống câu trên . KQ : -4,5
Vì \(\left|x+1,5\right|\ge0\) \(\Rightarrow\left|x+1,5\right|-5,7\ge-5,7 \)
\(\Rightarrow D_{min}=-5,7\Leftrightarrow\left|x+1,5\right|=0\)
\(\Rightarrow x+1,5=0\)
\(\Rightarrow x=-1,5\)
Vậy \(D_{min}=-5,7\Leftrightarrow x=-1,5\)
Ta có : \(\left|x+1,1\right|\ge0\forall x\in R\)
=> \(1,5-\left|x+1,1\right|\le1,5\forall x\in R\)
Nên giá trị lớn nhất của biểu thức là : 1,5 khi x = -1,1
C = 1,5 - |x + 1,1|
Để C lớn nhất thì |x + 1,1| phải bé nhất; mà |x + 1,1| luốn bé hơn hoặc = 0 vs mọi x => x+1.1 = 0 => x= -1.1
Vậy giá trị lớn nhất của C là: 1,5 vs x =-1.1
\(E=1,5-\left|2,7-x\right|\)
Ta thấy : \(\left|2,7-x\right|\ge0\)
\(\Leftrightarrow E=1,5-\left|2,7-x\right|\le1,5\)
Dấu " = " xảy ra
\(\Leftrightarrow2,7-x=0\)
\(\Leftrightarrow x=2,7\)
Vậy \(Max_E=1,5\Leftrightarrow x=2,7\)
\(C=1,5-\left|x-1,1\right|\le1,5\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left|x-1,1\right|=0\)
\(\Leftrightarrow\)\(x=1,1\)
Vậy GTLN của \(C\) là \(1,5\) khi \(x=1,1\)
Chúc bạn học tốt ~
Vì \(\left|x-1,1\right|\ge0\forall x\in Q\)
\(\Rightarrow1,5-\left|x-1,1\right|\le1,5-0\)
\(\Rightarrow C\le1,5\)
Do đó \(C\)nhận được giá trị lớn nhất \(=1,5\)khi \(\left|x-1,1\right|=0\)
\(\Leftrightarrow x-1,1=0\Leftrightarrow x=1,1\)
Vậy \(Cmax=1,5\) khi \(x=1,1\)