K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2021

Sửa \(\le\) thành \(\ge\) nha bạn

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\Leftrightarrow ab+bc+ca=abc\)

Ta có \(\dfrac{a^2}{a+bc}=\dfrac{a^3}{a^2+abc}=\dfrac{a^3}{a^2+ab+bc+ca}=\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}\)

Tương tự: \(\left\{{}\begin{matrix}\dfrac{b^2}{b+ca}=\dfrac{b^3}{\left(b+a\right)\left(b+c\right)}\\\dfrac{c^2}{c+ba}=\dfrac{c^3}{\left(c+b\right)\left(c+a\right)}\end{matrix}\right.\)

Áp dụng BĐT cosi:

\(\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{a+b}{8}+\dfrac{a+c}{8}\ge3\sqrt[3]{\dfrac{a^3}{64}}=\dfrac{3}{4}a\)

\(\dfrac{b^3}{\left(b+a\right)\left(b+c\right)}+\dfrac{a+b}{8}+\dfrac{b+c}{8}\ge3\sqrt[3]{\dfrac{b^3}{64}}=\dfrac{3}{4}b\)

\(\dfrac{c^3}{\left(c+b\right)\left(c+a\right)}+\dfrac{b+c}{8}+\dfrac{a+c}{8}\ge3\sqrt[3]{\dfrac{c^3}{64}}=\dfrac{3}{4}c\)

Cộng VTV:

\(\Leftrightarrow VT+\dfrac{a+b}{8}+\dfrac{a+c}{8}+\dfrac{b+c}{8}\ge\dfrac{3}{4}\left(a+b+c\right)\\ \Leftrightarrow VT\ge\dfrac{3\left(a+b+c\right)}{4}-\dfrac{2\left(a+b+c\right)}{8}\\ \Leftrightarrow VT\ge\dfrac{a+b+c}{4}\)

Dấu \("="\Leftrightarrow a=b=c=3\)

6 tháng 4 2017

Bài 1:

Dự đoán dấu "=" xảy ra khi \(a=b=c=1\) ta tính được giá trị là \(9\)

Ta sẽ chứng minh nó là GTLN

Thật vậy ta cần chứng minh

\(\Sigma\dfrac{11a+4b}{4a^2-ab+2b^2}\le\dfrac{3\left(ab+ac+bc\right)}{abc}\)

\(\LeftrightarrowΣ\left(\dfrac{3}{a}-\dfrac{11a+4b}{4a^2-ab+2b^2}\right)\ge0\)

\(\LeftrightarrowΣ\dfrac{\left(a-b\right)\left(a-6b\right)}{a\left(4a^2-ab+2b^2\right)}\ge0\)

\(\LeftrightarrowΣ\left(\dfrac{\left(a-b\right)\left(a-6b\right)}{a\left(4a^2-ab+2b^2\right)}+\dfrac{1}{b}-\dfrac{1}{a}\right)\ge0\)

\(\LeftrightarrowΣ\dfrac{\left(a-b\right)^2\left(a+b\right)}{ab\left(4a^2-ab+2b^2\right)}\ge0\) (luôn đúng)

Bài 2:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(a^5+b^2+c^2\right)\left(\dfrac{1}{a}+b^2+c^2\right)\ge\left(a^2+b^2+c^2\right)^2\)

\(\Rightarrow\dfrac{1}{a^5+b^2+c^2}\le\dfrac{\dfrac{1}{a}+b^2+c^2}{\left(a^2+b^2+c^2\right)^2}\)

Tương tự rồi cộng theo vế ta có:

\(Σ\dfrac{1}{a^5+b^2+c^2}\le\dfrac{Σ\dfrac{1}{a}+2Σa^2}{\left(a^2+b^2+c^2\right)^2}\)

Ta chứng minh \(Σ\dfrac{1}{a}+2\left(a^2+b^2+c^2\right)\le3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\) - BĐT cuối đúng

Vậy ta có ĐPCM. Dấu "=" xảy ra khi \(a=b=c=1\)

Bài 3:

Từ \(a+b+c=3abc\Rightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=3\)

Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)\rightarrow\left(x;y;z\right)\)\(\Rightarrow xy+yz+xz=3\) và BĐT cần chứng minh là

\(x^3+y^3+z^3\ge3\). Áp dụng BĐT AM-GM ta có:

\(x^3+x^3+1\ge3\sqrt[3]{x^3\cdot x^3\cdot1}=3x^2\)

Tương tự có: \(y^3+y^3+1\ge3y^2;z^3+z^3+1\ge3z^2\)

Cộng theo vế 3 BĐT trên ta có:

\(2\left(x^3+y^3+z^3\right)+3\ge3\left(x^2+y^2+z^2\right)\)

Lại có BĐT quen thuộc \(x^2+y^2+z^2\ge xy+yz+xz\)

\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge3\left(xy+yz+xz\right)=9\left(xy+yz+xz=3\right)\)

\(\Rightarrow2\left(x^3+y^3+z^3\right)+3\ge9\Rightarrow2\left(x^3+y^3+z^3\right)\ge6\)

\(\Rightarrow x^3+y^3+z^3\ge3\). BĐT cuối đúng nên ta có ĐPCM

Đẳng thức xảy ra khi \(a=b=c=1\)

T/b:Vâng, rất giỏi :GT8:

4 tháng 4 2017

lần sau đăng từng câu 1 dc ko bn :)

9 tháng 4 2017

dạng này chắc chắc là phải dùng AM-GM ngược dấu rồi :)

Ta có:

\(\dfrac{1+b}{1+4a^2}=1+b-\dfrac{4a^2\left(b+1\right)}{4a^2+1}\ge1+b-\dfrac{4a^2\left(b+1\right)}{4a}=1+b-a\left(b+1\right)\)

Tương tự cho 2 BĐT còn lại ta có:

\(\dfrac{1+c}{1+4b^2}\ge1+c-b\left(c+1\right);\dfrac{1+a}{1+4c^2}\ge1+a-c\left(a+1\right)\)

Cộng theo vế 3 BĐT trên ta có:

\(VT=\dfrac{1+b}{1+4a^2}+\dfrac{1+c}{1+4b^2}+\dfrac{1+a}{1+c^2}\)

\(\ge3+\left(a+b+c\right)-\left(ab+bc+ca\right)-\left(a+b+c\right)\)

\(=3-\dfrac{1}{3}\left(a+b+c\right)^2=3-\dfrac{1}{3}\cdot\dfrac{9}{4}=\dfrac{9}{4}=VP\)

Đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{2}\)

9 tháng 4 2017

\(VT=\left(\dfrac{a}{1+4c^2}+\dfrac{b}{1+4a^2}+\dfrac{c}{1+4b^2}\right)+\left(\dfrac{1}{1+4c^2}+\dfrac{1}{1+4a^2}+\dfrac{1}{1+4b^2}\right)\)

\(VT=\dfrac{3}{2}-\left(\dfrac{4c^2a}{1+4c^2}+\dfrac{4a^2b}{1+4a^2}+\dfrac{4b^2c}{1+4b^2}\right)+3-\left(\dfrac{4c^2}{1+4c^2}+\dfrac{4a^2}{1+4a^2}+\dfrac{4b^2}{1+4b^2}\right)\)

Xét \(\dfrac{3}{2}-\left(\dfrac{4c^2a}{1+4c^2}+\dfrac{4a^2b}{1+4a^2}+\dfrac{4b^2c}{1+4b^2}\right)\)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}1+4c^2\ge2\sqrt{4c^2}=4c\\1+4a^2\ge2\sqrt{4a^2}=4a\\1+4b^2\ge2\sqrt{4b^2}=4b\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{4c^2a}{1+4c^2}\le\dfrac{4c^2a}{4c}=ca\\\dfrac{4a^2b}{1+4a^2}\le\dfrac{4a^2b}{4a}=ab\\\dfrac{4b^2c}{1+4b^2}\le\dfrac{4b^2c}{4b}=bc\end{matrix}\right.\)

\(\Rightarrow\dfrac{3}{2}-\left(\dfrac{4c^2a}{1+4c^2}+\dfrac{4a^2b}{1+4a^2}+\dfrac{4b^2c}{1+4b^2}\right)\ge\dfrac{3}{2}-\left(ab+bc+ca\right)\) (1)

Xét \(3-\left(\dfrac{4c^2}{1+4c^2}+\dfrac{4a^2}{1+4a^2}+\dfrac{4b^2}{1+4b^2}\right)\)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}1+4c^2\ge2\sqrt{4c^2}=4c\\1+4a^2\ge2\sqrt{4a^2}=4a\\1+4b^2\ge2\sqrt{4b^2}=4b\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{4c^2}{1+4c^2}\le\dfrac{4c^2}{4c}=c\\\dfrac{4a^2}{1+4a^2}\le\dfrac{4a^2}{4a}=a\\\dfrac{4b^2}{1+4b^2}\le\dfrac{4b^2}{4b}=b\end{matrix}\right.\)

\(\Rightarrow3-\left(\dfrac{4c^2}{1+4c^2}+\dfrac{4a^2}{1+4a^2}+\dfrac{4b^2}{1+4b^2}\right)\ge\dfrac{3}{2}\) (2)

Từ (1) và (2)

\(\Rightarrow VT\ge\dfrac{3}{2}-\left(ab+bc+ca\right)+\dfrac{3}{2}\)

\(\Rightarrow VT\ge3-\left(ab+bc+ca\right)\) (3)

Theo hệ quả của bất đẳng thức Cauchy

\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Rightarrow\dfrac{3}{4}\ge ab+bc+ca\)

\(\Rightarrow3-\dfrac{3}{4}\le3-\left(ab+bc+ca\right)\)

\(\Rightarrow\dfrac{9}{4}\le3-\left(ab+bc+ca\right)\) (4)

Từ (3) và (4)

\(\Rightarrow VT\ge\dfrac{9}{4}\)

\(\Leftrightarrow\dfrac{1+b}{1+4a^2}+\dfrac{1+c}{1+4b^2}+\dfrac{1+a}{1+4c^2}\ge\dfrac{9}{4}\) (đpcm)

Dấu " = " xảy ra khi \(a=b=c=\dfrac{1}{2}\)

12 tháng 5 2018

A = \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

A = \(\dfrac{a^2}{a\left(b+c\right)}+\dfrac{b^2}{b\left(a+c\right)}+\dfrac{c^2}{c\left(a+b\right)}\)

Áp dụng BĐT Cô - Si dạng Engel vào bài toán , ta có :
\(\dfrac{a^2}{a\left(b+c\right)}+\dfrac{b^2}{b\left(a+c\right)}+\dfrac{c^2}{c\left(a+b\right)}\)\(\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}\) ( * )

Ta lại có BĐT : x2 + y2 + z2 ≥ xy + yz + zx

⇒ a2 + b2 + c2 ≥ ab + bc + ac

⇔ ( a + b + c)2 ≥ 3( ab + bc + ac)

\(\dfrac{\left(a+b+c\right)^2}{ab+bc+ac}\) ≥ 3 ( **)

Từ ( *;**) ⇒ \(\dfrac{a^2}{a\left(b+c\right)}+\dfrac{b^2}{b\left(a+c\right)}+\dfrac{c^2}{c\left(a+b\right)}\)\(\dfrac{3}{2}\)

\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)\(\dfrac{3}{2}\)

12 tháng 5 2018

Đời về cơ bản là buồn... cười!!!Phùng Khánh LinhHong Ra Onchú tuổi gìNguyễn Ngô Minh TríNhã Doanh, và nhiều bạn khác...

18 tháng 3 2017

áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức

\(\Rightarrow VT=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\)

Cần chứng minh rằng \(\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge a^2+b^2+c^2\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

áp dụng bđt Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ca\end{matrix}\right.\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\) ( đpcm )

Vậy \(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge a^2+b^2+c^2\)( đpcm )

18 tháng 3 2017

\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}=\dfrac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)}{ab+bc+ca}\ge a^2+b^2+c^2\)

16 tháng 3 2021

Đặt \(a=\dfrac{yz}{x^2};b=\dfrac{zx}{y^2};c=\dfrac{xy}{z^2}\)

Áp dụng BĐT BSC:

\(\dfrac{1}{a^2+a+1}+\dfrac{1}{b^2+b+1}+\dfrac{1}{c^2+c+1}\)

\(=\dfrac{x^4}{x^4+x^2yz+y^2z^2}+\dfrac{y^4}{y^4+y^2zx+z^2x^2}+\dfrac{z^4}{z^4+z^2xy+x^2y^2}\)

\(\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{x^4+y^4+z^4+x^2y^2+y^2z^2+z^2x^2+xyz\left(x+y+z\right)}\)

Ta cần chứng minh: 

\(\dfrac{\left(x^2+y^2+z^2\right)^2}{x^4+y^4+z^4+x^2y^2+y^2z^2+z^2x^2+xyz\left(x+y+z\right)}\ge1\)

\(\Leftrightarrow\left(x^2+y^2+z^2\right)^2\ge x^4+y^4+z^4+x^2y^2+y^2z^2+z^2x^2+xyz\left(x+y+z\right)\)

\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2-xy.yz-yz.zx-zx.xy\ge0\)

\(\Leftrightarrow\left(xy-yz\right)^2+\left(yz-zx\right)^2+\left(zx-xy\right)^2\ge0,\forall x,y,z\)

\(\Rightarrow dpcm\)

Đẳng thức xảy ra khi \(a=b=c=1\)

AH
Akai Haruma
Giáo viên
17 tháng 5 2018

Bài 1:

Ta có:

\(\text{VT}=\frac{a^2}{a+2b^2}+\frac{b^2}{b+2c^2}+\frac{c^2}{c+2a^2}\)

\(=a-\frac{2ab^2}{a+2b^2}+b-\frac{2bc^2}{b+2c^2}+c-\frac{2ca^2}{c+2a^2}=(a+b+c)-2\left(\frac{ab^2}{a+2b^2}+\frac{bc^2}{b+2c^2}+\frac{ca^2}{c+2a^2}\right)\)

\(=3-2M(*)\)

Áp dụng BĐT Cauchy ta có:

\(M=\frac{ab^2}{a+b^2+b^2}+\frac{bc^2}{b+c^2+c^2}+\frac{ca^2}{c+a^2+a^2}\leq \frac{ab^2}{3\sqrt[3]{ab^4}}+\frac{bc^2}{3\sqrt[3]{bc^4}}+\frac{ca^2}{3\sqrt[3]{ca^4}}\)

\(\Leftrightarrow M\leq \frac{1}{3}(\sqrt[3]{a^2b^2}+\sqrt[3]{b^2c^2}+\sqrt[3]{c^2a^2})\)

Tiếp tục áp dụng BĐT Cauchy:

\(\sqrt[3]{a^2b^2}+\sqrt[3]{b^2c^2}+\sqrt[3]{c^2a^2}\leq \frac{ab+ab+1}{3}+\frac{bc+bc+1}{3}+\frac{ca+ca+1}{3}=\frac{2(ab+bc+ac)+3}{3}\)

\(ab+bc+ac\leq \frac{(a+b+c)^2}{3}=3\) (quen thuộc)

\(\Rightarrow M\leq \frac{1}{3}.\frac{2.3+3}{3}=1(**)\)

Từ \((*);(**)\Rightarrow \text{VT}\geq 3-2.1=1\)

(đpcm)

Dấu bằng xảy ra khi $a=b=c=1$

AH
Akai Haruma
Giáo viên
17 tháng 5 2018

Bài 2:

Áp dụng BĐT Cauchy -Schwarz:

\(\text{VT}=\frac{a^3}{a^2+a^2b^2}+\frac{b^3}{b^2+b^2c^2}+\frac{c^3}{c^2+a^2c^2}\geq \frac{(a\sqrt{a}+b\sqrt{b}+c\sqrt{c})^2}{a^2+a^2b^2+b^2+b^2c^2+c^2+c^2a^2}\)

hay:

\(\text{VT}\geq \frac{(a\sqrt{a}+b\sqrt{b}+c\sqrt{c})^2}{1+a^2b^2+b^2c^2+c^2a^2}(*)\)

Mặt khác, theo BĐT Cauchy ta dễ thấy:

\(a^4+b^4+c^4\geq a^2b^2+b^2c^2+c^2a^2\)

\(\Rightarrow (a^2+b^2+c^2)^2\geq 3(a^2b^2+b^2c^2+c^2a^2)\)

\(\Leftrightarrow 1\geq 3(a^2b^2+b^2c^2+c^2a^2)\Rightarrow a^2b^2+b^2c^2+c^2a^2\leq \frac{1}{3}(**)\)

Từ \((*);(**)\Rightarrow \text{VT}\geq \frac{(a\sqrt{a}+b\sqrt{b}+c\sqrt{c})^2}{1+\frac{1}{3}}=\frac{3}{4}(a\sqrt{a}+b\sqrt{b}+c\sqrt{c})^2\)

Ta có đpcm

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

23 tháng 8 2017

Từ \(a+b+c=1\Rightarrow2\left(a+b+c\right)=2\)

\(\Rightarrow\left(a+b\right)+\left(b+c\right)+\left(c+a\right)=2\)

Và BĐT trên tương đương với

\(VT=\dfrac{c+ab}{a+b}+\dfrac{a+bc}{b+c}+\dfrac{b+ac}{a+c}\)

\(=\dfrac{c\left(a+b+c\right)+ab}{a+b}+\dfrac{a\left(a+b+c\right)+bc}{b+c}+\dfrac{b\left(a+b+c\right)+ac}{a+c}\)

\(=\dfrac{\left(a+c\right)\left(b+c\right)}{a+b}+\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(a+b\right)\left(b+c\right)}{a+c}\)

Đặt \(\left\{{}\begin{matrix}a+b=x\\b+c=y\\c+a=z\end{matrix}\right.\)\(\left(x,y,z>0\right)\) thì ta có:

\(\dfrac{yz}{x}+\dfrac{xz}{y}+\dfrac{xy}{z}\ge2\)\(\forall\left\{{}\begin{matrix}x,y,z>0\\x+y+z=2\end{matrix}\right.\)

Đúng theo BĐT AM-GM

30 tháng 9 2018

tại sao khúc cuối lại đúng với BĐT AM-GM? giải thích giúp mình được không?