K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 12 2018

Lời giải:

$2N-1$=2.1.3.5...2007-1=2.1.3.5...2007-3+2$ chia $3$ dư $2$. Mà một số chính phương khi chia $3$ chỉ dư $0$ hoặc $1$ nên $2N-1$ không thể là số chính phương.

-------------------------

Ta thấy $N$ là số lẻ nên \(2N\) là số chia hết cho $2$ nhưng không chia hết cho $4$. Do đó $2N$ không thể là số chính phương.

-------------

Ở trên ta đã cm $2N$ chia hết cho $2$ nhưng không chia hết cho $4$. Do đó $2N$ có dạng $4k+2$, kéo theo $2N+1$ có dạng $4k+3$.

Một số chính phương khi chia $4$ chỉ có dư $0$ hoặc $1$ chứ không thể là $3$. Do đó $2N+1$ cũng không phải là số chính phương.

Ta có đpcm.

24 tháng 5 2018

tham khảo ở đây : Câu hỏi của Vũ Thị Thanh Thảo - Toán lớp 6 - Học toán với OnlineMath

22 tháng 1 2020

C)gọi 3 số nguyên liên tiếp lần lượt là a, a+1 ,a+2

ta có: 

a+(a+1)+(a+2)

=3a+3

=3(a+1) => chia hết cho 3 

22 tháng 1 2020

d) Gọi 5 số nguyên liên tiếp ần lượt là a, a+1, a+2, a+3, a+4 

Ta có: a + a+1 + a+2 +a+3 +a+4

         =5a +10

        =5(a+2) => chi hết cho 5

26 tháng 7 2015

1)Gọi ƯCLN(2n+1;6n+5)=d

Ta có: 2n+1 chia hết cho d; 6n+5 chia hết cho d

=>3(2n+1) chia hết cho d; 6n+5 chia hết cho d

=>6n+3 chia hết cho d; 6n+5 chia hết cho d

mà 3;5 là 2 số nguyên tố cùng nhau

nên 6n+3 và 6n+5 là 2 số nguyên tố cùng nhau

hay 2n+1 và 6n+5 là 2 số nguyên tố cùng nhau

=>đpcm