tìm tất cả các số nguyên x và y sao cho cả hai số 3x-y+1 và 2x+3y-1 đều chia hất cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(3x-1⋮y\) và \(3y+1⋮x\)nên \(\left(3x-1\right)\left(3y+1\right)⋮xy\)
\(\Rightarrow9xy+3x+3y+1⋮xy\)
Mà \(9xy⋮xy\)
\(\Rightarrow\frac{3x}{y}+3+y\frac{1}{y}⋮x\)
Do vai trò của x , y như nhau , nên giả sử
\(\Rightarrow\frac{x}{y}\le1\)
\(\Rightarrow\frac{3x}{y}+3+\frac{1}{y}< 7\)
\(\Rightarrow1< x< 7\)
\(\Rightarrow x=2;3;4;5;6\)
Thay x vào 3x + 1 \(⋮\)y và 3y-1\(⋮x\)
Lời giải:
Đặt $x+y=a; 3x+2y=b$ với $a,b\in\mathbb{Z}$ thì pt trở thành:
$ab^2=b-a-1$
$\Leftrightarrow ab^2+a+1-b=0$
$\Leftrightarrow a(b^2+1)+(1-b)=0$
$\Leftrightarrow a=\frac{b-1}{b^2+1}$
Để $a$ nguyên thì $b-1\vdots b^2+1$
$\Rightarrow b^2-b\vdots b^2+1$
$\Rightarrow (b^2+1)-(b+1)\vdots b^2+1$
$\Rightarrow b+1\vdots b^2+1$
Kết hợp với $b-1\vdots b^2+1$
$\Rightarrow (b+1)-(b-1)\vdots b^2+1$
$\Rightarrow 2\vdots b^2+1$
Vì $b^2+1\geq 1$ nên $b^2+1=1$ hoặc $b^2+1=2$
Nếu $b^2+1=1\Rightarrow b=0$. Khi đó $a=\frac{b-1}{b^2+1}=-1$
Vậy $x+y=-1; 3x+2y=0\Rightarrow x=2; y=-3$ (tm)
Nếu $b^2+1=2\Rightarrow b=\pm 1$
Với $b=1$ thì $a=\frac{b-1}{b^2+1}=0$
Vậy $x+y=0; 3x+2y=1\Rightarrow x=1; y=-1$ (tm)
Với $b=-1$ thì $a=-1$
Vậy $x+y=-1; 3x+2y=-1\Rightarrow x=1; y=-2$ (tm)