Tìm 2 số tự nhiên a và b biết a+b=66 và
ƯCLN(a,b)=6. Đồng thời có 1 số chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ước riêng lớn nhất của a;b lần lượt là m; n và (m; n) = 1
a = 6.m; b = 6.n
Theo bài ra ta có: 6.m + 6.n = 66
6.(m + n) = 66
m + n = 66 : 6
m + n = 11 vì (m; n ) = 1 nên ta có:
(m; n)=(1; 11); (2; 9); (3; 8); (4; 7);(5; 6);(6; 5);(7; 4); 8; 3); 9;2);(11;1)
Vì một trong hai số chia hết cho 5 nên (m; n) = (5; 6); (6;5)
Vậy có 2 cặp số (m; n) thì cũng có 2 cặp số (a; b) thỏa mãn đề bài.
a, Số tự nhiên có dạng 20ab chia hết cho 2 , 5
=> 20ab phải có tận cùng là chữ số 0
=> b = 0
Mà 20a0 phải nhỏ nhất và chia hết cho 3
=> a = 1
Vậy số đó là 2010
b, 2x3y muốn chia hết cho 2,5 có tận cùng là 0
=> y = 0
Mà 2x30 phải chia hết cho 9
=> ( 2 + x + 3 + 0 ) chia hết cho 9
=> 5 + x chia hết cho 9
=> x = 4
=> tổng bằng 2430
Số bé là :
( 2430 - 1554 ) : 2 = 438
Số lớn là :
2430 - 438 = 1992
Vậy số bé là 438
Số lớn là 1992
Tk mk nha !!
cảm ơn !!
a ) để số đó chia hết cho 2 và 5 thì b=0
vậy ta có số 20a0 để chúng chia hết cho 3 thì
a=( 1;4;7 )
Vậy a =( 1;4;7 ) và b= 0
Gọi hai số tự nhiên cần tìm là a và b. Theo đề bài, ta có:
a + b = 66 (1)
GCD(a, b) = 6 (2)
Ta cần tìm hai số tự nhiên a và b sao cho có một số chia hết cho 5. Điều này có nghĩa là một trong hai số a và b phải chia hết cho 5.
Giả sử a chia hết cho 5, ta có thể viết lại a và b dưới dạng:
a = 5m
b = 6n
Trong đó m và n là các số tự nhiên.
Thay vào (1), ta có:
5m + 6n = 66
Để tìm các giá trị của m và n, ta có thể thử từng giá trị của m và tính giá trị tương ứng của n.
Thử m = 1, ta có:
5 + 6n = 66
6n = 61
n ≈ 10.17
Vì n không là số tự nhiên, nên m = 1 không thỏa mãn.
Thử m = 2, ta có:
10 + 6n = 66
6n = 56
n ≈ 9.33
Vì n không là số tự nhiên, nên m = 2 không thỏa mãn.
Thử m = 3, ta có:
15 + 6n = 66
6n = 51
n ≈ 8.5
Vì n không là số tự nhiên, nên m = 3 không thỏa mãn.
Thử m = 4, ta có:
20 + 6n = 66
6n = 46
n ≈ 7.67
Vì n không là số tự nhiên, nên m = 4 không thỏa mãn.
Thử m = 5, ta có:
25 + 6n = 66
6n = 41
n ≈ 6.83
Vì n không là số tự nhiên, nên m = 5 không thỏa mãn.
Thử m = 6, ta có:
30 + 6n = 66
6n = 36
n = 6
Với m = 6 và n = 6, ta có:
a = 5m = 5 * 6 = 30
b = 6n = 6 * 6 = 36
Vậy, hai số tự nhiên cần tìm là 30 và 36.
Gọi hai số tự nhiên cần tìm là a và b. Theo đề bài, ta có:
a - b = 84 (1)
UCLN(a, b) = 12 (2)
Ta có thể viết lại a và b dưới dạng:
a = 12m
b = 12n
Trong đó m và n là các số tự nhiên.
Thay vào (1), ta có:
12m - 12n = 84
Chia cả hai vế của phương trình cho 12, ta có:
m - n = 7 (3)
Từ (2) và (3), ta có hệ phương trình:
m - n = 7
m + n = 12
Giải hệ phương trình này, ta có:
m = 9
n = 3
Thay m và n vào a và b, ta có:
a = 12m = 12 * 9 = 108
b = 12n = 12 * 3 = 36
Vậy, hai số tự nhiên cần tìm là 108 và 36.
1) \(a+b=66;UCLN\left(a;b\right)=6\)
\(\Rightarrow6x+6y=66\Rightarrow6\left(x+y\right)=66\Rightarrow x+y=11\)
mà có 1 số chia hết cho 5
\(\Rightarrow\left\{{}\begin{matrix}x=5\\y=6\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=6.5=30\\b=6.6=36\end{matrix}\right.\)
Vậy 2 số đó là 30 và 36 thỏa đề bài
2) \(a-b=66;UCLN\left(a;b\right)=12\left(a>b\right)\)
\(\Rightarrow12x-12y=84\Rightarrow12\left(x-y\right)=84\Rightarrow x-y=7\)
\(\Rightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=12.3=36\\y=12.4=48\end{matrix}\right.\)
Vậy 2 số đó là 48 và 36 thỏa đề bài
ƯCLN(a,b)=6
=> a=6m ; b=6n ( ƯCLN(m,n)=1.)
Vì a+b=66
=> 6m+6n = 66
=> 6.(m+n) = 66
=> m+n =11
Vì ƯCLN(m,n)=1
=> (m;n) = ( 1;10) ; (2;9) ; (3;8) ; (4;7) ; ( 5;6 ) ; ( 6;5 ) ;( 7;4) ;( 8;3) ; (9;2) ;( 10;1)
=> (a;b) = ( 6;60) ; ( 12;54) ; (18;48) ;( 24;42) ;( 30;36) ;( 36;30) ;( 42;24) ; ( 48;18) ; ( 54;12 ) ;( 60;6)
Vì có 1 số chia hết cho 5
=> (a;b) = ( 6;60) ; ( 30;36) ; ( 36;30) ; (60;6)