K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác BFEC có góc BFC=góc BEC=90 độ

nên BFEC là tứ giác nội tiếp

=>góc AFE=góc ACB

=>ΔAFE đồng dạng với ΔACB

b: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có

góc FHB=góc EHC

Do đó: ΔHFB đồng dạng với ΔHEC

Suy ra: HF/HE=HB/HC

hay \(HF\cdot HC=HB\cdot HE\)(1)

Xét ΔHFA vuông tại F và ΔHDC vuông tại D có

góc FHA=góc DHC

Do đó: ΔHFA đồng dạg với ΔHDC

Suy ra: HF/HD=HA/HC

hay \(HF\cdot HC=HA\cdot HD\left(2\right)\)

Từ (1) và (2) suy ra \(HA\cdot HD=HB\cdot HE=HC\cdot HF\)

a: Xét tứ giác BDHF có

góc BDH+góc BFH=180 độ

=>BDHF là tứ giác nội tiếp

b: Xét tứ giác BFEC có

góc BFC=góc BEC=90 độ

=>BFEC là tứ giác nội tiếp

c: Xét ΔHAF vuông tại F và ΔHCD vuông tại D có

góc AHF=góc CHD

=>ΔHAF đồng đạng với ΔHCD

=>HA/HC=HF/HD

=>HA*HD=HF*HC

Xét ΔHFB vuông tại F và ΔHEC vuông tại E có

góc FHB=góc EHC

=>ΔHFB đồng dạng vơi ΔHEC

=>HF/HE=HB/HC

=>HF*HC=HB*HE=HA*HD

d: Xét ΔAEF và ΔABC có

góc AEF=góc ABC

góc FAE chung

=>ΔAEF đồng dạng với ΔABC

29 tháng 4 2020

+) Câu d sửa đề thành BF . BA + CE . CA = BC2

a, Xét △AFH vuông tại F và △ADB vuông tại D

Có: FAH là góc chung

=> △AFH ᔕ △ADB (g.g)

b, Vì △AFH ᔕ △ADB (cmt) \(\Rightarrow\frac{AF}{AD}=\frac{AH}{AB}\)\(\Rightarrow\frac{AB}{AD}=\frac{AH}{AF}\)

Xét △ABH và △ADF

Có: \(\frac{AB}{AD}=\frac{AH}{AF}\)(cmt)

        BAH là góc chung

=> △ABH ᔕ △ADF (c.g.c)

c, Xét △HFB vuông tại F và △HEC vuông tại E

Có: FHB = EHC (2 góc đối đỉnh)

=> △HFB ᔕ △HEC (g.g)

\(\Rightarrow\frac{HF}{HE}=\frac{HB}{HC}\)

=> HF . HC = HE . HB  

d, Sửa đề thành BF . BA + CE . CA = BC2

Xét △HEC vuông tại E và △AFC vuông tại F

Có: HCE là góc chung

=> △HEC ᔕ △AFC (g.g)

\(\Rightarrow\frac{EC}{FC}=\frac{HC}{AC}\)

=> FC . HC = EC . AC  (1)

Xét △HFB vuông tại F và △AEB vuông tại E

Có: FBH là góc chung

=> △HFB ᔕ △AEB (g.g)

\(\Rightarrow\frac{FB}{EB}=\frac{HB}{AB}\)

=> FB . AB = EB . HB  (2)

Xét △BFC vuông tại F và △HDC vuông tại D

Có: HCD là góc chung

=> △BFC ᔕ △HDC (g.g)

\(\Rightarrow\frac{FC}{DC}=\frac{BC}{HC}\)

=> FC . HC = BC . DC (3)

Xét △BEC vuông tại E và △BDH vuông tại D

Có: HBD là góc chung

=> △BEC ᔕ △BDH (g.g)

\(\Rightarrow\frac{BC}{BH}=\frac{BE}{DB}\)

=> BC . DB = BE . BH (4)

Từ (1) và (3) => EC . AC = BC . DC

Từ (2) và (4) => FB . AB = BC . DB 

Ta có: BF . BA + CE . CA = BC . BD + BC . DC = BC . (BD + DC) = BC . BC = BC2

4 tháng 9 2020

A B C D E F H

Xét ∆ABE và ∆ACF có:

\(\widehat{A}\left(chung\right)\)

\(\widehat{AEB}=\widehat{AFC}\left(=90^0\right)\)

\(\Rightarrow\)∆ABE ~ ∆ACF (g-g)

\(\Rightarrow\frac{AE}{AF}=\frac{AB}{AC}\Rightarrow\frac{AE}{AB}=\frac{AF}{AC}\)

Xét ∆AEF và ∆ABC có:

\(\frac{AE}{AB}=\frac{AF}{AC}\left(cmt\right)\)

\(\widehat{A}\left(chung\right)\)\

\(\Rightarrow\)∆AEF ~ ∆ABC (đpcm)

Ta có: \(\tan B=\frac{ÁD}{DB};\tan C=\frac{AD}{DC}\)

Xét ∆ADC và ∆BDH có:

\(\widehat{HBD}=\widehat{CAD}\)( cùng phụ với \(\widehat{C}\))

\(\widehat{ADC}=\widehat{BDH}\left(=90^0\right)\)

\(\Rightarrow\)∆ADC ~ ∆ BDH (g-g)

\(\Rightarrow\frac{AD}{DC}=\frac{BD}{DH}\)

\(\Rightarrow\tan B\cdot\tan C=\frac{AD}{DB}\cdot\frac{AD}{DC}=\frac{AD}{DB}\cdot\frac{BD}{DH}=\frac{AD}{DH}\)(đpcm)

a: Xét ΔAEB vuông ạti E và ΔAFC vuôg tại F có

góc BAE chung

=>ΔAEB đồng dạg vơi ΔAFC

=>AE/AF=AB/AC
=>AE*AC=AB*AF
b: Xét ΔAEF và ΔABC có

AE/AB=AF/AC
góc A chung

=>ΔAEF đồng dạng vơi ΔABC