Cho : 1/a + 1/b + 1/c = 1/ a^2 + 1/b^2 +
1/c^2 = 2
C/m : a+ b + c = abc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a+b+c=\frac{1}{abc}\)
\(\Leftrightarrow abc\left(a+b+c\right)=1\)(*)
\(\Leftrightarrow a^2bc+ab^2c+abc^2=1\)
Ta có :
\(1+b^2c^2=a^2bc+ab^2c+abc^2+b^2c^2\)
\(=abc\left(a+b\right)+bc^2\left(a+b\right)\)
\(=bc\left(a+b\right)\left(a+c\right)\)
Tương tự ta cũng có \(1+a^2c^2=ac\left(a+b\right)\left(b+c\right)\)
Khi đó : \(\left(1+b^2c^2\right)\left(1+a^2c^2\right)=abc^2\left(a+b\right)^2\left(b+c\right)\left(a+c\right)\)(1)
Xét \(c^2+a^2b^2c^2\)
\(=a^2b^2c^2+\frac{abc^3}{abc}\)
\(=a^2b^2c^2+abc^3\left(a+b+c\right)\)( theo giả thiết )
\(=a^2b^2c^2+a^2bc^3+ab^2c^3+abc^4\)
\(=abc^2\left(ab+bc+ca+c^2\right)\)
\(=abc^2\left(b+c\right)\left(a+c\right)\)(2)
Từ (1) và (2) ta suy ra :
\(\sqrt{\frac{\left(1+b^2c^2\right)\left(1+a^2c^2\right)}{c^2+a^2b^2c^2}}=\sqrt{\frac{abc^2\left(a+b\right)^2\left(b+c\right)\left(a+c\right)}{abc^2\left(b+c\right)\left(a+c\right)}}\)
\(=\sqrt{\left(a+b\right)^2}=\left|a+b\right|=a+b\)( vì \(a,b\in Z^+\) )
Ta có đpcm.
+) chứng minh 1/ab+b+1 + 1/bc+c+1 + 1/ac+a+1=1
<=> abc/ab+b+abc + abc/bc+c+abc + 1/ac+a+1
<=> ac/ac+a+1 + ab/b+1+ab + 1/ac+a+1
<=> ac+a+1/ac+a+1
<=> 1
+) xét: a^2+2b^2+3=(a^2+b^2)+(b^2+1)+2 >= 2ab+2b+2<=1/2(ab+b+1) (1)
chứng minh tương tự:1/ b^2+2c^2+3 <= 1/2(bc+c+1) (2)
1/ c^2+2a^2+3 <= 1/2(ac+a+1) (3)
cộng các vế của (1),(2),(3) ta duoc: 1/(a^2+2b^2+3) + 1/(b^2+2c^2+3) + 1/(c62+2a^2+3) <= 1/2.(1/ab+b+1 + 1/bc+c+1 + 1/ac+a+1)=1/2 (đpcm)
mình làm rồi, bạn vào đây tham khảo nha: http://olm.vn/hoi-dap/question/559729.html
\(\dfrac{1}{c}+b^2c=ab\left(a+b+c\right)+b^2c=ab\left(a+c\right)+b^2\left(a+c\right)=b\left(a+b\right)\left(a+c\right)\)
\(\dfrac{1}{c}+a^2c=ab\left(a+b+c\right)+a^2c=a\left(a+b\right)\left(b+c\right)\)
\(\Rightarrow\left(\dfrac{1}{c}+b^2c\right)\left(\dfrac{1}{c}+a^2c\right)=ab\left(a+b\right)^2\left(b+c\right)\left(a+c\right)\)
\(\Leftrightarrow\left(1+b^2c^2\right)\left(1+a^2c^2\right)=c^2\left(a+b\right)^2ab\left(ab+bc+ac+c^2\right)\)\(=c^2\left(a+b\right)^2\left(a^2b^2+ab^2c+a^2bc+abc^2\right)\)\(=c^2\left(a+b\right)^2\left[a^2b^2+abc\left(a+b+c\right)\right]=c^2\left(a+b\right)^2\left(a^2b^2+1\right)\)
\(\Rightarrow\dfrac{\left(1+b^2c^2\right)\left(1+a^2c^2\right)}{c^2\left(a^2b^2+1\right)}=\left(a+b\right)^2\)
\(\Leftrightarrow\sqrt{\dfrac{\left(1+b^2c^2\right)\left(1+a^2c^2\right)}{c^2+a^2b^2c^2}}=a+b\) (đpcm)
\(\dfrac{a^2b^2}{2a^2+b^2+3a^2b^2}=\dfrac{a^2b^2}{\left(a^2+b^2\right)+\left(a^2+a^2b^2\right)+2a^2b^2}\le\dfrac{a^2b^2}{2ab+2a^2b+2a^2b^2}=\dfrac{ab}{2\left(1+a+ab\right)}\)
Tương tự và cộng lại;
\(P\le\dfrac{1}{2}\left(\dfrac{ab}{1+a+ab}+\dfrac{bc}{1+b+bc}+\dfrac{ca}{1+c+ca}\right)\)
\(P\le\dfrac{1}{2}\left(\dfrac{ab}{1+a+ab}+\dfrac{abc}{a+ab+abc}+\dfrac{ab.ca}{ab+abc+ab.ca}\right)\)
\(P\le\dfrac{1}{2}\left(\dfrac{ab}{1+a+ab}+\dfrac{1}{a+ab+1}+\dfrac{a}{ab+1+a}\right)=\dfrac{1}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
với x+y+z=0 thì \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0< =>\)x3 +y3 +z3 =3xyz
nếu đặt x=a2; y=b2 ;z=c2 thì ta cần có a2 +b2 +c2 =0 thì sẽ có a6 +b6 +c6 =3a2b2c2
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0< =>\frac{ab+bc+ca}{abc}=0< =>ab+bc+ca=0.\)
a+b+c=0 <=> (a+b+c)2 =0 <=> \(a^2+b^2+c^2+2\left(ab+bc+ca\right)=0< =>a^2+b^2+c^2=0.\)(chứng minh xong)
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=2^2\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{1}{a}.\frac{1}{b}+2.\frac{1}{b}.\frac{1}{c}+2.\frac{1}{a}.\frac{1}{c}=4\)
\(\Rightarrow2+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=4\)
\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=1\)
\(\Rightarrow\frac{a+b+c}{abc}=1\Rightarrow a+b+c=abc\)
Chúc bạn học tốt.
Cho : 1/a + 1/b + 1/c = 1/ a^2 + 1/b^2 +
1/c^2 = 2
C/m : a+ b + c = abc