K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2018

     \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=2^2\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{1}{a}.\frac{1}{b}+2.\frac{1}{b}.\frac{1}{c}+2.\frac{1}{a}.\frac{1}{c}=4\)

\(\Rightarrow2+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=4\)

\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=1\)

\(\Rightarrow\frac{a+b+c}{abc}=1\Rightarrow a+b+c=abc\)

Chúc bạn học tốt.

Cho : 1/a + 1/b + 1/c = 1/ a^2 + 1/b^2 +  

1/c^2 = 2

C/m : a+ b + c = abc

30 tháng 4 2016

+) chứng minh 1/ab+b+1 + 1/bc+c+1 + 1/ac+a+1=1

<=> abc/ab+b+abc + abc/bc+c+abc + 1/ac+a+1

<=> ac/ac+a+1 + ab/b+1+ab + 1/ac+a+1

<=> ac+a+1/ac+a+1

<=> 1

+) xét: a^2+2b^2+3=(a^2+b^2)+(b^2+1)+2 >= 2ab+2b+2<=1/2(ab+b+1) (1)

chứng minh tương tự:1/ b^2+2c^2+3 <= 1/2(bc+c+1) (2)

                                    1/ c^2+2a^2+3 <= 1/2(ac+a+1) (3)

cộng các vế của (1),(2),(3) ta duoc: 1/(a^2+2b^2+3) + 1/(b^2+2c^2+3) + 1/(c62+2a^2+3) <= 1/2.(1/ab+b+1 + 1/bc+c+1 + 1/ac+a+1)=1/2 (đpcm)

30 tháng 4 2016

mình làm rồi, bạn vào đây tham khảo nha: http://olm.vn/hoi-dap/question/559729.html

24 tháng 10 2019

với x+y+z=0 thì \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0< =>\)x3 +y3 +z3 =3xyz

nếu đặt x=a2; y=b2 ;z=c2 thì ta cần có a2 +b2 +c2 =0 thì sẽ có a6 +b6 +c6 =3a2b2c2

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0< =>\frac{ab+bc+ca}{abc}=0< =>ab+bc+ca=0.\)

a+b+c=0 <=> (a+b+c)2 =0 <=> \(a^2+b^2+c^2+2\left(ab+bc+ca\right)=0< =>a^2+b^2+c^2=0.\)(chứng minh xong)

NV
9 tháng 5 2020

\(1+a^2b^2=abc\left(a+b+c\right)+a^2b^2=ab\left(ab+bc+ca+c^2\right)=ab\left(a+c\right)\left(b+c\right)\)

\(1+b^2c^2=bc\left(a+b\right)\left(a+c\right)\) ; \(1+a^2c^2=ac\left(a+b\right)\left(b+c\right)\)

\(\Rightarrow Q=\frac{c^2\left(a+b\right)^2ab\left(a+c\right)\left(b+c\right)}{bc\left(a+b\right)\left(a+c\right)ac\left(a+b\right)\left(b+c\right)}=1\)

1 tháng 2 2017

\(A=\frac{a}{ab+a+2}+\frac{b}{bc+b+1}+\frac{2c}{ac+2c+2}\)

\(=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{abc^2}{ac+abc^2+abc}\)

\(=\frac{a}{a\left(bc+b+1\right)}+\frac{b}{bc+b+1}+\frac{abc^2}{ac\left(bc+b+1\right)}\)

\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}\)

\(=\frac{bc+b+1}{bc+b+1}=1\)