K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2018

A = (-1)2n .(-1)n.(-1)n+1

A = (-1)2n+n+n+1

A = (-1)4n+1

21 tháng 9 2018

\(A=\left(-1\right)^{2n}\cdot\left(-1\right)^n\cdot\left(-1\right)^{n+1}\)

\(A=\left(-1\right)^{2n+n+n+1}\)

\(A=\left(-1\right)^{4n+1}\)

a: \(\left(-1\right)^{2n}=1\)

b: \(\left(-1\right)^{2n+1}=-1\)

1 tháng 12 2017

2.a)n^5+1⋮n^3+1

⇒n^2.(n^3+1)-n^2+1⋮n^3+1

⇒1⋮n^3+1

⇒n^3+1ϵƯ(1)={1}

ta có :n^3+1=1

n^3=0

n=0

Vậy n=0

b)n^5+1⋮n^3+1

Vẫn làm y như bài trên nhưng vì nϵZ⇒n=0

Bữa sau giải bài 3 mình buồn ngủ quá!!!!!!!!

15 tháng 10 2019

c) \(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=-5n\)Vì n nguyên

\(\Rightarrow-5n⋮5\left(đpcm\right)\)

15 tháng 10 2019

a) \(\left(2n+3\right)^2-9\)

\(=\left(2n+3-3\right)\left(2n+3+3\right)\)

\(=2n\left(2n+6\right)\)

\(=4n\left(n+3\right)\)

Do \(n\in Z\Rightarrow n+3\in Z\)

\(\Rightarrow4n\left(n+3\right)⋮4\left(đpcm\right)\)

8 tháng 2 2020

a) -25.21.(-2)2.(-/-3/).(-1)2n+!

= -25.21.4.(-3).( -1 )

= ( -25.4 ).( -3.21 ).( -1 )

= -100.( -63 ).( -1 )

= -6300

b) ( -5 )3.67.(-/-23/).( -1 )2n

= -15.67.8.1

= -8040

Mk ko chắc ! ~HỌC TỐT~

9 tháng 7 2017

a) Ta có : n / 2n + 3 < n + 2 / 2n + 3 + 2

                                = n + 2 / 2n + 5

Mà n + 2 / 2n + 5 < n + 2 / 2n + 1

=> n / 2n + 3 < [ n + 2 / 2n + 5 ] < n + 2 / 2n + 1

Vậy n / 2n + 3 < n + 2 / 2n + 1

b) Ta có : n / 3n + 1 = 2n / 6n + 2

Mà 2n / 6n + 2 < 2n / 6n + 1

Vậy n / 3n + 1 < 2n / 6n + 1 

15 tháng 12 2016

làm câu

3 tháng 2 2018

2)

a) 2n+5 chia het cho n-1 

=> 2(n-1) +7 chia het cho n-1 

=: n-1 thuoc uoc cua 7 den day ke bang la xong. 

may cau con lai lam tuong tu

3 tháng 2 2018

dài quá ko mún làm

NV
13 tháng 8 2021

\(S=a+a^3+...+a^{2n+1}\)

\(S.a^2=a^3+a^5+...+a^{2n+1}+a^{2n+3}\)

\(\Rightarrow S\left(a^2-1\right)=a^{2n+3}-a\)

\(\Rightarrow S=\dfrac{a^{2n+3}-a}{a^2-1}\)

\(S_1=1+a^2+...+a^{2n}\)

\(S_1.a^2=a^2+a^4+...+a^{2n}+a^{2n+2}\)

\(\Rightarrow S_1\left(a^2-1\right)=a^{2n+2}-1\)

\(\Rightarrow S_1=\dfrac{a^{2n+2}-1}{a^2-1}\)