K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2018

Ủa ủa!Phiền bạn xem lại đề hổng có tam giác ABCD nha!!! 🙃🙃

30 tháng 12 2015

tick đi sau làm cho

 

30 tháng 12 2015

don gian tick di to lam cho

5 tháng 12 2018

a)Vì AM là đường trung tuyền nên ta có

AM=1/2BC

AM=(1/2).5 => AM=2,5(cm)

b)áp dụng định lý Pytago vào tam giác ABC vuông tại A ta có

AB^2+AC^2=BC^2

thay số ta có : 3^2+AC^2=5^2=>9+AC^2=25=>AC^2=25-9=16

=>AC= căn bậc 2 của 16

=>AC=4(cm)

diện tích tam giác ABC là:

S=1/2a.h=1/2.3.4=6(cm2)

Hết nhé ^_^

ta có tam giác ABC vuông tại A 

Áp dụng tỉ số lượng giác trong .........................

=> AM2=BM.BC

=>AM=\(\sqrt{2,5\times5}\approx3,6cm\)

diện tích tam giác vuông ABC là 

                   STAM GIÁC ABC=\(\frac{1}{2}AM.BC=9cm^2\)

4 tháng 1 2018

a, Diện tích tam giác ABC là :

          S ABC^2 = (4+5+8)/2 . [(4+5+8)/2-4] . [(4+5+8)/2-5] . [(4+5+8)/2-6] 

                        = 8,5 . 4,5 . 3,5 . 0,5 = 669,375 ( công thức hê-rông rùi bình phương 2 vế lên )

=> S ABC = 25,87228247 (cm2)

Tk mk nha

12 tháng 10 2018

hình tự vẽ nhé

a)  \(AB< AC\) =>  \(BH< CH\)

Áp dụng hệ thức lượng vào tam giác vuông ABC ta được:

\(AH^2=BH.CH\)

=>  \(BH.CH=4\)

mà   \(BH+CH=5\),   

  giải ra ta được:  \(BH=1cm;\)\(CH=4cm\)

Áp dụng hệ thức lượng vào tam giác vuông ABC đc:

AB2 = BH . BC

=> AB2 = 1 . 5 = 5

=>  \(AB=\sqrt{5}cm\)

Tương tự đc:  \(AC=2\sqrt{5}cm\)

12 tháng 10 2018

b)  Tam giác ABC có AM là trung tuyến

=>  AM = BM = MC = BC/2 = 2,5 cm

\(\sin AMH=\frac{AH}{AM}=\frac{2}{2,5}=0,8\)

=>  \(\widehat{AMH}\approx53^08'\)

c)  \(HM=BM-BH=2,5-1=1,5cm\)

\(S_{\Delta AHM}=\frac{AH.HM}{2}=\frac{2.1,5}{2}=1,5cm^2\)

18 tháng 7 2015

AM = 5 => BC = 10 

Dung py ta go  tính ra AB 

Tính các góc còn lại nhờ 3 cạnh vừa tính dùng hàm cos ; sin gì đó

\(HC=\dfrac{3^2}{4}=2.25\left(cm\right)\)

BC=HB+HC=6,25(cm)

AM=BC/2=3,125(cm)

\(AB=\sqrt{4\cdot6.25}=5\left(cm\right)\)

\(AC=\sqrt{6.25^2-5^2}=3.75\left(cm\right)\)

15 tháng 5 2022

+ ) áp dụng định lí Pytago trong tam giác vuông \(ABH\) vuông tại \(H\) , ta có :

\(AB^2=AH^2+HB^2=3^2+4^2=25\Rightarrow AB=5\left(cm\right)\)

+ ) áp dụng hệ thức về cạnh và đường cao trong tam giác vuông \(ABC\) với \(AH\) là đường cao , ta có :

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\) \(\dfrac{1}{AC^2}=\dfrac{1}{AH^2}-\dfrac{1}{AB^2}\) 

\(\Leftrightarrow\) \(\dfrac{1}{AC^2}=\dfrac{1}{3^2}-\dfrac{1}{5^2}=\dfrac{16}{225}\) 

\(\Rightarrow AC=\dfrac{15}{4}\left(cm\right)\)

+ ) áp dụng định lí Pytago trong tam giác vuông \(ABC\) vuông tại \(A\) , ta có :

\(BC^2=AB^2+AC^2=5^2+\left(\dfrac{15}{4}\right)^2=\dfrac{625}{16}\)

\(\Rightarrow BC=\dfrac{25}{4}\left(cm\right)\)

+ ) tam giác \(ABC\) vuông tại \(A\) có trung tuyến \(AM\) nên ta có :

\(AM=\dfrac{1}{2}BC=\dfrac{25}{8}\left(cm\right)\)

 

 

23 tháng 5 2021

A B C H M

Xét tam giác ABH vuông tại H, ta có:

\(AB^2=AH^2+BH^2\)\(=3^2+4^2=25\)

\(\Rightarrow AB=5\left(cm\right)\)

Xét tam giác ABC vuông tại A, theo hệ thức lượng ta có:

\(AH^2=AB\cdot AC\Rightarrow AC=\dfrac{AH^2}{AB}=\dfrac{3^2}{5}=1,8\left(cm\right)\)

Do đó:\(BC=\sqrt{AB^2+AC^2}=\sqrt{5^2+1,8^2}\simeq5,3\left(cm\right)\)

AM là đường trung tuyến trong tam giác vuông ABC

=> AM=\(\dfrac{1}{2}\) BC= 2,65 \(\left(cm\right)\)