Giải phương trình 2(a-1)x-a(x-1)=2a+3 khi a=2 Ai biết giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Vì $a\geq 1$ nên:
\(a+\sqrt{a^2-2a+5}+\sqrt{a-1}=a+\sqrt{(a-1)^2+4}+\sqrt{a-1}\)
\(\geq 1+\sqrt{4}+0=3\)
Ta có đpcm
Dấu "=" xảy ra khi $a=1$
Bài 2:
ĐKXĐ: x\geq -3$
Xét hàm:
\(f(x)=x(x^2-3x+3)+\sqrt{x+3}-3\)
\(f'(x)=3x^2-6x+3+\frac{1}{2\sqrt{x+3}}=3(x-1)^2+\frac{1}{2\sqrt{x+3}}>0, \forall x\geq -3\)
Do đó $f(x)$ đồng biến trên TXĐ
\(\Rightarrow f(x)=0\) có nghiệm duy nhất
Dễ thấy pt có nghiệm $x=1$ nên đây chính là nghiệm duy nhất.
Ta có:
2(a − 1)x − a(x − 1) = 2a + 3
⇔(a − 2)x = a + 3 (3)
Do đó, khi a = 2, phương trình (2) tương đương với phương trình 0x = 5.
Phương trình này vô nghiệm nên phương trình (2) vô nghiệm.
\(\left(a-1\right)x+2a+1>0\)
=>\(\left(a-1\right)x>-2a-1\)
=>\(x>\dfrac{-2a-1}{a-1}\)
a, Thay x = 2 ta được 6 - 5 = 3 - 2 (luondung)
Vậy x = 2 là nghiệm pt trên
Thay x = 1 ta được 3 - 5 = 3 - 1 (voli)
Vậy x = 1 ko phải là nghiệm pt trên
b, Thay x = 2 ta được \(2m=m+6\Leftrightarrow m=6\)
\(2\left(a-1\right)x-a\left(x-1\right)=2a+3\\ \Leftrightarrow2ax-2x-ax+a=2a+3\\ \Leftrightarrow-2x=-ax+a+3\\ \Leftrightarrow-2x=-2x-2+3\\ \Leftrightarrow0x=-1\Leftrightarrow x\in\varnothing\)
\(2\left(a-1\right)x-a\left(x-1\right)=2a+3\)
\(\Leftrightarrow2ax-2x-ax+a=2a+3\)
\(\Leftrightarrow2x-ax+a+3=0\)
\(\Leftrightarrow2x-2x+2+3=0\)
\(\Leftrightarrow5=0\left(VLý\right)\)
Vậy \(S=\varnothing\)