Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Khi $m=1$ thì pt trở thành:
$x^2-3=0$
$\Leftrightarrow x^2=3\Leftrightarrow x=\pm \sqrt{3}$
b.
Để pt có 2 nghiệm $x_1,x_2$ thì:
\(\left\{\begin{matrix}
m\neq 0\\
\Delta'=(m-1)^2-m(m-4)=2m+1\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
m\neq 0\\
m\geq \frac{-1}{2}\end{matrix}\right.\)
Áp dụng định lý Viet, với $x_1,x_2$ là nghiệm của pt thì:
$x_1+x_2=\frac{2(m-1)}{m}$
$x_1x_2=\frac{m-4}{m}$
Khi đó:
$x_1+2x_2=3$
$\Leftrightarrow x_2=3-(x_1+x_2)=3-\frac{2(m-1)}{m}=\frac{m+2}{m}$
$x_1=\frac{2(m-1)}{m}-x_2=\frac{m-4}{m}$
$\frac{m-4}{m}=x_1x_2=\frac{m-4}{m}.\frac{m+2}{m}$
$\Leftrightarrow \frac{m-4}{m}(\frac{m+2}{m}-1)=0$
$\Leftrightarrow \frac{m-4}{m}.\frac{2}{m}=0$
$\Leftrightarrow m=4$ (tm)
a: Khi m=2 thì pt sẽ là \(x^2-8x-9=0\)
=>x=9 hoặc x=-1
b: \(\text{Δ}=\left(2m+4\right)^2-4\left(-2m-5\right)\)
\(=4m^2+16m+16+8m+20=4m^2+24m+36\)
\(=4\left(m^2+6m+9\right)=4\left(m+3\right)^2>=0\)
Để phương trình có hai nghiệm phân biệt thì m+3<>0
hay m<>-3
Theo đề, ta có: \(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=2\)
\(\Leftrightarrow\sqrt{\left(2m+4\right)^2-4\left(-2m-5\right)}=2\)
\(\Leftrightarrow\sqrt{4m^2+16m+16+8m+20}=2\)
\(\Leftrightarrow4m^2+24m+36=4\)
\(\Leftrightarrow m^2+6m+9=1\)
=>m+3=1 hoặc m+3=-1
=>m=-2 hoặc m=-4
1) Thay m=2 vào (1), ta được:
\(x^2-2\cdot3x+16-8=0\)
\(\Leftrightarrow x^2-6x+8=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
Vậy: Khi m=2 thì (1) có hai nghiệm phân biệt là: \(x_1=2\); \(x_2=4\)
b) Ta có: \(\Delta=4\cdot\left(2m-1\right)^2-4\cdot1\cdot\left(8m-8\right)\)
\(\Leftrightarrow\Delta=4\cdot\left(4m^2-4m+1\right)-4\left(8m-8\right)\)
\(\Leftrightarrow\Delta=16m^2-16m+4-32m+32\)
\(\Leftrightarrow\Delta=16m^2-48m+36\)
\(\Leftrightarrow\Delta=\left(4m\right)^2-2\cdot4m\cdot6+6^2\)
\(\Leftrightarrow\Delta=\left(4m-6\right)^2\)
Để phương trình có hai nghiệm phân biệt thì \(\left(4m-6\right)^2>0\)
mà \(\left(4m-6\right)^2\ge0\forall m\)
nên \(4m-6\ne0\)
\(\Leftrightarrow4m\ne6\)
hay \(m\ne\dfrac{3}{2}\)
Vậy: Để phương trình có hai nghiệm phân biệt thì \(m\ne\dfrac{3}{2}\)
a: Thay m=5 vào pt, ta được:
\(x^2+12x+25=0\)
\(\Leftrightarrow x^2+12x+36=11\)
\(\Leftrightarrow\left(x+6\right)^2=11\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{11}-6\\x=\sqrt{11}-6\end{matrix}\right.\)
b:
\(\text{Δ}=\left(2m+2\right)^2-4m^2=8m+4\)
Để phương trình có hai nghiệm phân biệt thì 8m+4>0
hay m>-1/2
Thay x=-2 vào pt, ta được:
\(4-4\left(m+1\right)+m^2=0\)
\(\Leftrightarrow m^2-4m=0\)
\(\Leftrightarrow m\left(m-4\right)=0\)
=>m=0(nhận) hoặc m=4(nhận)
a: Khi m=-2 thì phương trình sẽ là:
x^2-2x=0
=>x=0 hoặc x=2
b: Khi x=-1 thì phương trình sẽ là:
(-1)^2+2+m+2=0
=>m+5=0
=>m=-5
x1+x2=2
=>x2=2+1=3
c: Δ=(-2)^2-4(m+2)
=4-4m-8=-4m-4
Để PT có hai nghiệm phân biệt thì -4m-4>=0
=>m<=-1
a: x^2-mx+m-1=0
Khi m=5 thì (1) sẽ là x^2-5x+4=0
=>x=1 hoặc x=4
b:Δ=(-m)^2-4(m-1)=m^2-4m+4=(m-2)^2
Để phươg trình có 2 nghiệm phân biệt thì m-2<>0
=>m<>2
x2=2x1
x2+x1=m
=>3x1=m và x2=2x1
=>x1=m/3 và x2=2/3m
x1*x2=m-1
=>2/9m^2-m+1=0
=>2m^2-9m+9=0
=>2m^2-3m-6m+9=0
=>(2m-3)(m-3)=0
=>m=3 hoặc m=3/2
a, Với m=1 thay vào pt
Ta có
\(x^2+x-1=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-1+\sqrt{5}}{2}\\x=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\)
b,
Thay x=2 vào pt
ta có
\(4-2-3m+2=0\)
\(\Leftrightarrow4-3m=0\)
\(\Rightarrow m=\dfrac{4}{3}\)
c, Ta có
\(\Delta=1-4\left(-3m+2\right)\)
\(=12m-7\)
Để pt có 2 nghiệm phân biệt thì \(\Delta>0\)
\(\Rightarrow12m-7>0\)
\(\Rightarrow m>\dfrac{7}{12}\)
d,
Để ptcos nghiệm kép thì \(\Delta=0\)
\(\Rightarrow12m-7=0\)
\(\Rightarrow m=\dfrac{7}{12}\)
e,
Để pt vô nghiệm thì \(\Delta< 0\)
\(\Rightarrow m< \dfrac{7}{12}\)
\(\Delta=\left(2m+1\right)^2-4\left(m^2+m-2\right)=9>0;\forall m\)
Phương trình luôn có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1x_2=m^2+m-2\end{matrix}\right.\)
\(x_1\left(x_1-2x_2\right)+x_2\left(x_2-2x_1\right)=9\)
\(\Leftrightarrow x_1^2+x_2^2-4x_1x_2=9\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-6x_1x_2=9\)
\(\Leftrightarrow\left(2m+1\right)^2-6\left(m^2+m-4\right)=9\)
\(\Leftrightarrow2m^2+2m-4=0\)
\(\Rightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)
đẽ vãi