tinh tong:
S=(1+2.5+3.5+...+101+201)+12+22+32+...1002)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Each term of S is n!(n2 + n + 1) = n![n(n + 1) + 1] = n(n + 1)n! + n!
By definition, n(n + 1)n! + n! = n! + n(n + 1)!
Therefore, S can be simplified as
1! + 1.2! + 2! + 2.3! + ... + 100! + 100.101!
So \(\dfrac{S+1}{101!}=\dfrac{1+1!+1\cdot2!+2!+2\cdot3!+...+100!+100\cdot101!}{101!}\)
\(=\dfrac{2!+1\cdot2!+2!+2\cdot3!+3!+...+100!+100\cdot101!}{101!}\)
\(=\dfrac{3!+2\cdot3!+3!+...+100!+100\cdot101!}{101!}\)
\(=\dfrac{4!+3\cdot4!+4!+...+100!+100\cdot101!}{101!}\)
\(=...\)
\(=\dfrac{100!+99\cdot100!+100!+100\cdot101!}{101!}\)
\(=\dfrac{101!+100\cdot101!}{101!}\)
\(=1+100=101\)
Hence, \(\dfrac{S+1}{101!}=101\)
a:
Số số hạng trong dãy M là:
(1002-12):10+1=100(số)
=>Sẽ có 50 cặp (1002;992); (982;972);....;(22;12) có hiệu bằng 10
\(M=1002-992+982-972+...+22-12\)
\(=\left(1002-992\right)+\left(982-972\right)+...+\left(22-12\right)\)
\(=10+10+...+10\)
=10*50=500
b: \(N=\left(202+182+...+42+22\right)-\left(192+172+...+32+12\right)\)
\(=\left(202-192\right)+\left(182-172\right)+...+\left(22-12\right)\)
=10+10+...+10
=10*10=100
a) \(=\left(127+73\right)^2=200^2=40000\)
b) \(=18^8-\left(18^8-1\right)=1\)
c) \(=\left(100+99\right)\left(100-99\right)+\left(98+97\right)\left(98-97\right)+...+\left(2+1\right)\left(2-1\right)\)
\(=100+99+98+97+...+2+1=5050\)
d) biến đổi thành \(20^2-19^2+18^2-17^2+..+2^2-1^2\)
rồi giải ra như trên
\(B=1\cdot2\cdot3+2\cdot3\cdot4+...+\left(n-1\right)\cdot n\cdot\left(n+1\right)\)
=>\(4B=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot4+...+\left(n-1\right)\cdot n\left(n+1\right)\cdot4\)
=>\(4B=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\left(5-1\right)+...+\left(n-1\right)\cdot n\left(n+1\right)\left[\left(n+2\right)-\left(n-2\right)\right]\)
=>\(4B=1\cdot2\cdot3\cdot4-1\cdot2\cdot3\cdot4+...+\left(n-2\right)\left(n-1\right)\cdot n\cdot\left(n+1\right)-\left(n-2\right)\cdot\left(n-1\right)\cdot n\cdot\left(n+1\right)+\left(n-1\right)\cdot n\left(n+1\right)\left(n+2\right)\)
=>\(4B=\left(n-1\right)\cdot n\cdot\left(n+1\right)\left(n+2\right)\)
=>\(B=\dfrac{\left(n-1\right)\cdot n\left(n+1\right)\left(n+2\right)}{4}\)
\(C=1\cdot4+2\cdot5+3\cdot6+...+n\left(n+3\right)\)
\(=1\cdot\left(1+3\right)+2\left(2+3\right)+...+n\left(n+3\right)\)
\(=\left(1^2+2^2+...+n^2\right)+3\left(1+2+...+n\right)\)
\(=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}+3\cdot\dfrac{n\left(n+1\right)}{2}\)
\(=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}+\dfrac{3n\left(n+1\right)}{2}\)
\(=\dfrac{n\left(n+1\right)}{2}\cdot\left(\dfrac{2n+1}{3}+3\right)\)
\(=\dfrac{n\left(n+1\right)}{2}\cdot\dfrac{2n+1+9}{3}\)
\(=\dfrac{n\left(n+1\right)\left(n+5\right)}{3}\)
\(D=1^2+2^2+...+n^2\)
\(=1+\left(1+1\right)\cdot2+\left(1+2\right)\cdot3+...+\left(1+n-1\right)\cdot n\)
\(=1+2+3+...+n+\left(1\cdot2+2\cdot3+...+\left(n-1\right)\cdot n\right)\)
Đặt \(A=1+2+3+...+n;E=1\cdot2+2\cdot3+...+\left(n-1\right)\cdot n\)
\(E=1\cdot2+2\cdot3+...+\left(n-1\right)\cdot n\)
=>\(3E=1\cdot2\cdot3+2\cdot3\cdot3+...+\left(n-1\right)\cdot n\cdot3\)
=>\(3E=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+...+\left(n-1\right)\cdot n\left[\left(n+1\right)-\left(n-2\right)\right]\)
=>\(3E=1\cdot2\cdot3-1\cdot2\cdot3+2\cdot3\cdot4+...+\left(n-1\right)\cdot n\left(n-2\right)-\left(n-1\right)\cdot n\left(n-2\right)+\left(n-1\right)\cdot n\cdot\left(n+1\right)\)
=>\(3E=\left(n-1\right)\cdot n\left(n+1\right)=n^3-n\)
=>\(E=\dfrac{n^3-n}{3}\)
\(A=1+2+3+...+n\)
Số số hạng là n-1+1=n(số)
Tổng của dãy số là: \(A=\dfrac{n\left(n+1\right)}{2}\)
=>\(D=\dfrac{n^3-n}{3}+\dfrac{n\left(n+1\right)}{2}\)
\(=\dfrac{2n^3-2n+3n^2+3n}{6}\)
=>\(D=\dfrac{2n^3+3n^2+n}{6}\)
TK
S=1.4+2.5+3.6+4.7+....+n.(n+3) S = 1. ( 2 + 2 ) + 2. ( 3 + 2 ) + 3. ( 4 + 2 ) + . . . + n . [ ( n + 1 ) + 2 ] S = 1.2 + 2.3 + 3.4 + . . . . + n . ( n + 1 ) + ( 1.2 + 2.2 + 3.2 + . . . . + n .2 ) Đặt A = 1.2 + 2.3 + 3.4 + . . . . + n . ( n + 1 ) 3 A = 1.2.3 + 2.3. ( 4 − 1 ) + . . . . + n . ( n + 1 ) . [ ( n + 2 ) − ( n − 1 ) 3 A = 1.2.3 + 2.3.4 − 1.2.3 + . . . . + n . ( n + 1 ) . ( n + 2 ) − ( n − 1 ) . n . ( n + 1 ) 3 A = n . ( n + 1 ) . ( n + 2 ) A = [ n . ( n + 1 ) . ( n + 2 ) ] : 3 S = [ n . ( n + 1 ) . ( n + 2 ) ] : 3 + 2. ( 1 + 2 + 3 + . . . + n ) S = [ n . ( n + 1 ) . ( n + 2 ) ] : 3 + 2. n . ( n + 1 ) : 2 S = n . ( n + 1 ) . ( n + 2 ) : 3 + n . ( n + 1 ) S = n . ( n + 1 ) . [ ( n + 2 ) : 3 + 1 )
D = 1^2 + 2^2 + 3^2 + ... + n^2
= 1.( 2 - 1 ) + 2.( 3-1 ) + 3.( 4-1 ) + .... + n.[ ( n+ 1) - 1 ]
= 1.2 - 1 + 2.3 - 2 + 3.4 - 3 + .... + n.( n+1 ) - n
= [ 1.2 + 2.3 + 3.4 + ..... + n.( n + 1 ) ] - ( 1 + 2 + 3 + .... + n )
= { [ n.( n+1 ).( n+2 )] /3 } - { [ n.( n+1)] /2 }
= { n(n+1)(2n+1) }/ 6
Vậy.........
https://olm.vn/cau-hoi/a-cho-a12211216211002-ctr-a12-b-cho-p122132142120232-ctr-p-khong-la-so-tu-nhien-c-cho-c132152172120211.8293222842881
Cô làm rồi em nhá
Ban ghi lai ro de dc k a
tính tổng:
S=(1+2.5+3.5...+101+201)+(12+22+32+...1002)