K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2020

A B C M E

a) CMR AC // BE

xét tam giacs AMC và tam giác EMB

có AM = ME (gt)

     BM = MC (M trung điểm BC)

     \(\widehat{AMC}=\widehat{EMB}\left(dd\right)\)

=> tam giác AMC = tam giác EMB (cgc)

=> \(\widehat{MBE}=\widehat{MCB}\)mà chúng ở vị trí so le trong => AC//BE

6 tháng 3 2020

b) bạn tự thêm điểm I và K vào hình vẽ nhé, mình lười :))

ta có I thuộc AC, K thuộc BE nên

IC = AC - AI và BK = BE - KE

mà AC = BE (cmt), AI = KE (gt)

=> IC = BK 

xét tam giác IMC và tam giác KMB

có: BK = IC (cmt)

BM = MC (cmt)

góc MBK = góc ICM (AC//BE)

=> tam giác IMC = tam giác KMB (cgc) 

=> góc IMC = góc KMB

khi đó góc IMK = 180 độ

I, M, K thẳng hàng

7 tháng 1 2018

A B C M E

\(\Rightarrow\)\(\Rightarrow\)

3 tháng 3 2020

Cho tam giác ABC,M là trung điểm của BC,Trên tia đối của tia MA lấy E sao cho ME = MA,Chứng minh AC // BE,Gọi I là một điểm trên AC,K là một điểm trên EB sao cho AI = EK,Chứng minh ba điểm I M K thẳng hàng,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

# mui #

21 tháng 2 2020

a) xét tam giác EBM và tam giác ACM có :
BM=CM (gt)
góc AMC=gócBME (2 góc đối đỉnh)
ME=MA (gt)
=> tam giác EBM = tam giác ACM (c-g-c)
=> góc E = góc A (2 góc tương ứng)
mà chúng nằm ở vị chí so le trong 
=> AC // BE (đpcm)
b)xét tam giác tam giác AIM và tam giác EKM có :
MA=ME (GT)
góc A=góc E (cmt)
AI=EK (GT) 
=> tam giác AIM=tam giác EKM (c-g-c)
=> góc AMI = góc KME (2 cạnh tương ứng) 
Mà góc AMI+ góc IME =180
góc KME+ góc IME= 180

=>IMK=180

=> I,M,K thẳng hàng

29 tháng 11 2016

M A B C E I K H 1 2

a, Xét hai tam giác AMC và tam giác BME, ta có:

     AM=ME (giả thiết)

     góc BME= góc AMC (2 góc đối đỉnh)

     BM=MC (M là trung điểm của BC)

Suy ra: tam giác AMC= tam giác BME (c.g.c)

=> AC=BE (hai cạnh tương ứng) (ĐPCM)

=>góc MAC= góc MEB (2 góc tương ứng)

Mà 2 góc này ở vị trí so le trong nên: AC//BE (ĐPCM)

b, Xét tam giác AMI và tam giác EMK, ta có:

KE=AI (giả thiết)

góc CAM= góc EMK(chứng minh trên)

AM=Me ( giả thiết)

Suy ra: tam giác AMI= tam giác EMK(c.g.c)

=> góc AMI= góc EMK (2 góc tương ứng)

Mà góc AMI+ góc IME= 180 độ (2 góc kề bù)

Do đó: góc IME+ góc EMK= 180 độ

Hay 3 điểm I,M,K thẳng hàng (ĐPCM)

c, Vì góc HME là góc ngoài của tam giác BME nên:

HME= MBE+ MEB

       = 50 độ+ 25 độ

       = 75 độ

Xét tam giác vuông có H1= 90 độ, ta có

HME+HEM= 90 độ

=> Hem= 90 độ- HME= 90 độ- 75 độ= 15 độ

Theo định lí tổng 3 góc trong tam giác BME, ta có:

BME+ MBE+ BEM= 180 độ

=> BME= 180 độ- MBE-BEM= 180 đọ- 50 đọ- 25 độ= 105 độ

Vậy HEM=15 độ

BME= 105 độ

25 tháng 3 2016

A B C M E H K I

a/

-Xét tam giác ACM và tam giác EBM, có:

   CM=MB (gt)

   góc AMC = góc EMB ( đối đỉnh )

   AM=ME ( gt)

=> tam giác ACM và tam giác EBM bằng nhau ( c.g.c )

=> AC=EB

- Theo chứng minh trên 

=> góc ACM = góc MBE ( hai góc so le trong )

=> AC song song BE.

b) ( câu này ko bik nhé)

c)

ta có góc BME = 180 -50-25

                       = 105 độ.

góc HEM = góc MHE - góc HME

                =90- 105 (??????)

Cậu xem lại đề nhé.

               

  

4 tháng 11 2016
a)AC=EB và AC//BEem chứng minh tam giác AMC = tam giác EMB (c.g.c)=> AC = EB và góc CAM = góc BEM mà 2 góc này ở vị trí so le trong nên AC//BEb) Chứng minh ba điểm I,M,K thẳng hàng.em chứng minh IC = BK, góc ACM = góc EBM( suy ra từ câu a)khi đó tam giác IMC = tam giác KMB (c.g.c)=> góc IMC = góc KMBkhi đó góc IMK = 180 độI, M, K thẳng hàng
16 tháng 11 2016

Má sao ko ai tick vậy

24 tháng 4 2015

 

 

b) xét tam giác ICM và BMK có IC=BK ; MB=MC ; gocKBM=ICM(theo câu a ) suy ra  ICM=BMK(c.g.c) suy ra BMK=CMI(đổi định) suy ra  I ; M ;K THẲNG HÀNG

 

a) xet tam giac AMC va EBM co BM=CM : AM=ME M1=M suy ra EMB=EBM suy ra AC=EB            ta co goc MAC=goc MEB suy ra AC//BE (so le trong)

Bài 1:

a: Xét ΔMAC và ΔMEB có

MA=ME

\(\widehat{AMC}=\widehat{EMB}\)(hai góc đối đỉnh)

MC=MB

Do đó: ΔMAC=ΔMEB

=>AC=EB

Ta có: ΔMAC=ΔMEB

=>\(\widehat{MAC}=\widehat{MEB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AC//BE

b: Xét ΔIAM và ΔKEM có

IA=KE

\(\widehat{IAM}=\widehat{KEM}\)

AM=EM

Do đó: ΔIAM=ΔKEM

=>\(\widehat{IMA}=\widehat{KME}\)

=>\(\widehat{IMA}+\widehat{AMK}=180^0\)

=>I,M,K thẳng hàng

Bài 2:

2xy-x-y=12

=>x(2y-1)-y+1/2=12,5

=>\(2x\left(y-\dfrac{1}{2}\right)-\left(y-\dfrac{1}{2}\right)=12,5\)

=>\(2x\left(2y-1\right)-\left(2y-1\right)=25\)

=>\(\left(2x-1\right)\left(2y-1\right)=25\)

=>\(\left(2x-1;2y-1\right)\in\left\{\left(1;25\right);\left(25;1\right);\left(-1;-25\right);\left(-25;-1\right);\left(5;5\right);\left(-5;-5\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(2;13\right);\left(13;2\right);\left(0;-12\right);\left(-12;0\right);\left(3;3\right);\left(-2;-2\right)\right\}\)

17 tháng 12 2017

A B C M E K I Câu trả lời mình gửi sau:

31 tháng 10 2021

k biết

 

2 tháng 9 2015

                                                                GIAI

a/Xet tam giac ACM va tam giac BME,co :

AM=MẸ̣̣̣(gt)

BM=MC̣̣̣̣̣̣̣(gt)

gocAMC=gocBME(ḍḍ)

Vay tam giac AMC = tam giac EMB(cgc)

Suy ra goc MAC = goc MEB(2 goc tuong ung)

ma goc MAC va goc MBE la 2 goc so le trong

nen AC//BE

b/Taco goc BMI+IMC=180

ma goc IMC= goc BMK(dd)

nen goc BMI+ gocBMK=180

Vay 3 diem I,M,K thang hang

A I C E M B K

26 tháng 12 2018

TA có;AM=EM và BM=CM

Suy ra;AE và BC cắt nhau tại trung điểm M    (câu a)

Do đó;tứ giác ABEC là hình binh hành

Nên AC song song với BE