Chứng minh rằng: ( 1+2+3+4+...+n ) - 7 không chia hết cho 10 (với n thuộc N)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
23 tháng 2 2015
tong 1+2+3+...+n=(n+1)n/2 . vi n(n+1) la 2 so tu nhien lien tiep nen tan cung bang 0;2;6 suy ra N=1+2+3+4+5+...+n-7= (n+1)n/2-7
suy ra N tan cung bang 3;4;6 suy ra khong chia het cho 10
5 tháng 4 2017
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
Lời giải:
$A=1+2+3+....+n-7=\frac{n(n+1)}{2}-7=\frac{n^2+n-14}{2}$
Để chứng minh $A\not\vdots 10$, ta chỉ ra $A\not\vdots 5$
Nếu $n\vdots 5$ thì hiển nhiên $n^2+n-14\not\vdots 5$
$\Rightarrow A\not\vdots 5$
Nếu $n=5k+1(k\in\mathbb{N})$ thì:
$n^2+n-14=(5k+1)^2+5k+1-14=25k^2+15k-12\not\vdots 5$
$\Rightarrow A\not\vdots 5$
Nếu $n=5k+2(k\in\mathbb{N})$ thì:
$n^2+n-14=(5k+2)^2+5k+2-14=25k^2+25k-8\not\vdots 5$
$\Rightarrow A\not\vdots 5$
Nếu $n=5k+3(k\in\mathbb{N})$ thì:
$n^2+n-14=(5k+3)^2+5k+3-14=25k^2+35k-2\not\vdots 5$
$\Rightarrow A\not\vdots 5$
Nếu $n=5k+4(k\in\mathbb{N})$ thì:
$n^2+n-14=(5k+4)^2+5k+4-14=25k^2+45k+6\not\vdots 5$
$\Rightarrow A\not\vdots 5$
Vậy $A\not\vdots 5$ nên $A\not\vdots 10$