K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2018

Đặt A = 1 + 7 + 72 + ... + 7101

=> A = 70 + 71 + ... + 7101

=> A = 70 ( 1 + 7 ) + ... + 7100 ( 1 + 7 )

=> A = 70 . 8 + ... + 7100 . 8

=> A = 8 . ( 70 + ... + 7100 ) chia hết cho 8 ( đpcm )

15 tháng 10 2023

\(1+7+7^2+7^3+...+7^{101}\\=(1+7)+(7^2+7^3)+(7^4+7^5)+...+(7^{100}+7^{101})\\=8+7^2\cdot(1+7)+7^4\cdot(1+7)+...+7^{100}\cdot(1+7)\\=8+7^2\cdot8+7^4\cdot8+...+7^{100}\cdot8\\=8\cdot(1+7^2+7^4+...+7^{100})\)

Vì \(8\cdot\left(1+7^2+7^4+...+7^{100}\right)⋮8\)

\(\Rightarrowđpcm\)

15 tháng 10 2023

\(1+7+7^2+7^3+...+7^{101}\)

\(=\left(1+7\right)+7^2\left(1+7\right)+...+7^{100}\left(1+7\right)\)

\(=8\left(1+7^2+...+7^{100}\right)⋮8\)

23 tháng 7 2016

CMR: 4+4^2+4^3+4^4+...+4^16 chia hết cho 5

bạn tivh1 mình nhé

4 tháng 10 2021

\(A=1+4+4^2+...+4^{2012}=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{2010}\left(1+4+4^2\right)\)

\(=21+21.4^3+...+21.4^{2010}=21\left(1+4^3+...+4^{2010}\right)⋮21\)

\(B=1+7+7^2+...+7^{101}=\left(1+7\right)+7^2\left(1+7\right)+...+7^{100}\left(1+7\right)\)

\(=8+7^2.8+...+7^{100}.8=8\left(1+7^2+...+7^{100}\right)⋮8\)

\(M=1+7+7^1+7^2+...+7^{101}\)

\(=\left(1+7\right)+7\left(1+7\right)+...+7^{100}\left(1+7\right)\)

\(=8\cdot\left(1+7+...+7^{100}\right)⋮8\)

25 tháng 10 2020

1) \(1+4+4^2+4^3+...+4^{2012}\)

\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{2010}+4^{2011}+4^{2012}\right)\)

\(=21+21\cdot4^3+...+21\cdot4^{2010}\)

\(=21\cdot\left(1+4^3+...+4^{2010}\right)\) chia hết cho 21

2) \(1+7+7^2+7^3+...+7^{101}\)

\(=\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{100}+7^{101}\right)\)

\(=8+8\cdot7^2+...8\cdot7^{100}\)

\(=8\cdot\left(1+7^2+...+7^{100}\right)\) chia hết cho 8

3) CM chia hết cho 5:

\(2+2^2+2^3+2^4+...+2^{100}\)

\(=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{98}+2^{100}\right)\)

\(=5\cdot2+5\cdot2^2+...+5\cdot2^{98}\)

\(=5\cdot\left(2+2^2+...+2^{98}\right)\) chia hết cho 5

CM chia hết cho 31:

\(2+2^2+2^3+...+2^{100}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2\cdot31+...+2^{96}\cdot31\)

\(=31\cdot\left(2+...+2^{96}\right)\) chia hết cho 31

19 tháng 11 2023

Rrffhvyccbvfccvbbbhhgg

21 tháng 10 2021

giúp tớ với

17 tháng 12 2021

a)

A=1+4+42+...+459A=1+4+42+...+459

A=(1+4+42)+(43+44+45)+...+(457+458+459)A=(1+4+42)+(43+44+45)+...+(457+458+459)

A=(1+4+42)+43(1+4+42)+...+447(1+4+42)A=(1+4+42)+43(1+4+42)+...+447(1+4+42)

A=21+43.21+...+447.21A=21+43.21+...+447.21

A=21(1+43+...+447)A=21(1+43+...+447)

⇒A⋮21
các số như 43,447,459,458........ là 4 mũ và các số đằng sau là số mũ
câu b cũng làm như vậy nhưng dổi các số và kết quả

6 tháng 10 2018

Câu 2;3;4 dễ quá... bỏ qua!!

Câu 5;6 khó quá ... khỏi làm!!

dễ quá bỏ qua!!, khó quá khỏi làm!!

cứ tiêu chí mày bạn sẽ vượt qua mọi bài toán... và nhanh chóng đạt 1đ.