Tinh nhanh a=1\20+1\30+1\42+1\56+1\72+1\90
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1/20+1/30+1/42+1/56+1/72+1/90
A=1/4x5+1/5x6+1/6x7+1/7x8+1/8x9+1/9x10
A=1/4-1/5+1/5-1/6+...+1/9-1/10
A=1/4-1/10
A=3/20
A = 1/90 - 1/72 - 1/56 - ... - 1/6 - 1/2
A = 1/90 - (1/2 + 1/6 + ... + 1/56 + 1/72)
A = 1/90 - (1/1.2 + 1/2.3 + ... + 1/7.8 + 1/8.9)
A = 1/90 - (1 - 1/2 + 1/2 - 1/3 + ... + 1/7 - 1/8 + 1/8 - 1/9)
A = 1/90 - (1 - 1/9)
A = 1/90 - 8/9
A = 1/90 - 80/90
A = -79/90
A = 1/90 - 1/72 - 1/56 - ... - 1/6 - 1/2
A = 1/90 - (1/2 + 1/6 + ... + 1/56 + 1/72)
A = 1/90 - (1/1.2 + 1/2.3 + ... + 1/7.8 + 1/8.9)
A = 1/90 - (1 - 1/2 + 1/2 - 1/3 + ... + 1/7 - 1/8 + 1/8 - 1/9)
A = 1/90 - (1 - 1/9)
A = 1/90 - 8/9
A = 1/90 - 80/90
A = -79/90
\(\dfrac{1}{20}=\dfrac{1}{4x5}=\dfrac{1}{4}-\dfrac{1}{5}\)
Tương tự các phân số khác
S= \(\dfrac{1}{4}-\dfrac{1}{12}=\dfrac{1}{6}\)
\(\dfrac{1}{20}+\dfrac{1}{30}\)+ \(\dfrac{1}{42}\)+\(\dfrac{1}{56}\)+\(\dfrac{1}{72}\)+\(\dfrac{1}{90}\)+\(\dfrac{1}{110}\)+\(\dfrac{1}{132}\)
= \(\dfrac{1}{4\times5}\)+\(\dfrac{1}{5\times6}\)+\(\dfrac{1}{6\times7}\)+\(\dfrac{1}{7\times8}\)+\(\dfrac{1}{8\times9}\)+\(\dfrac{1}{9\times10}\)+\(\dfrac{1}{10\times11}\)+\(\dfrac{1}{11\times12}\)
= \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\)+\(\dfrac{1}{6}\)-\(\dfrac{1}{7}\)+\(\dfrac{1}{7}\)-\(\dfrac{1}{8}\)+\(\dfrac{1}{8}\)-\(\dfrac{1}{9}\)+\(\dfrac{1}{9}\)-\(\dfrac{1}{10}\)+\(\dfrac{1}{10}\)-\(\dfrac{1}{11}\)+\(\dfrac{1}{11}\)-\(\dfrac{1}{12}\)
= \(\dfrac{1}{4}\) - \(\dfrac{1}{12}\)
= \(\dfrac{3}{12}\) - \(\dfrac{1}{12}\)
= \(\dfrac{2}{12}\)
=\(\dfrac{1}{6}\)
`=1/[4xx5]+1/[5xx6]+1/[6xx7]+...+1/[11xx12]`
`=1/4-1/5+1/5-1/6+1/6-1/7+...+1/11-1/12`
`=1/4-1/12=3/12-1/12=2/12=1/6`
\(\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}+\dfrac{1}{132}\\ =\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+\dfrac{1}{6\times7}+\dfrac{1}{7\times8}+\dfrac{1}{8\times9}+\dfrac{1}{9\times10}+\dfrac{1}{10\times11}+\dfrac{1}{11\times12}\\ =\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}\\ =\dfrac{1}{4}-\dfrac{1}{12}\\ =\dfrac{3}{12}-\dfrac{1}{12}=\dfrac{2}{12}=\dfrac{1}{6}\)
\(\dfrac{9}{10}-\dfrac{1}{90}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-\dfrac{1}{30}-\dfrac{1}{20}-\dfrac{1}{12}-\dfrac{1}{6}-\dfrac{1}{2}\)
\(=\dfrac{9}{10}-\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{72}+\dfrac{1}{90}\right)\)
\(=\dfrac{9}{10}-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{8.9}+\dfrac{1}{9.10}\right)\)
\(=\dfrac{9}{10}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right)\)
\(=\dfrac{9}{10}-\left(1-\dfrac{1}{10}\right)=\dfrac{9}{10}-\dfrac{9}{10}=0\)
\(\dfrac{9}{10}-\dfrac{1}{90}-\dfrac{1}{72}-\dfrac{1}{56}-...-\dfrac{1}{6}-\dfrac{1}{2}=-\left(-\dfrac{9}{10}+\dfrac{1}{90}+\dfrac{1}{72}+\dfrac{1}{56}+...+\dfrac{1}{6}+\dfrac{1}{2}\right)\)
\(=-\left(-\dfrac{9}{10}+\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\right)\)
\(=-\left(-\dfrac{9}{10}+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\right)\)
\(=-\left(-\dfrac{9}{10}+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right)\)
\(=-\left(-\dfrac{9}{10}+1-\dfrac{1}{10}\right)=-\left(-\dfrac{9}{10}+\dfrac{9}{10}\right)=0\)
Đặt A = 1/2 + 5/6 + ... + 89/90
9 - A = 1- 1/2 + 1- 5/6 + ... + 1- 89/90
9 -A = 1/2 + 1/6 + ... + 1/90
9 -A = 1/1.2 + 1/2.3 + ... + 1/9.10
9-A = 1/1 - 1/2 + 1/2 - 1/3 +.... + 1/9 - 1/10
9 - A = 1/1 - 1/10
9- A = 9/10
=> A = 9 - 9/10
=> A = 81/10
em lớp 6 nha
B= 1/2 + 1/6 + 1/12 +1/20 + 1/30 + 1/42 + 1/56 + 1/72
B= 1/1*2 + 1/2*3 + 1/3*4 + 1/4*5 + 1/5*6 + 1/6*7 + 1/7*8 + 1/8*9
B=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9
B=1+0-0-0-0-0-0-0-1/9
B=1-1/9
B=8/9
k em nha
A=1/20+1/30+1/42+1/56+1/72+1/90
A=1/4.5+1/5.6+1/6.7+1/7.8+1/8.9+1/9.10
A=1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10
A=1/4-1/10
A=3/20
k nha
\(A=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\)
\(A=\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}\)
\(A=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(A=\frac{1}{4}-\frac{1}{10}\)
\(A=\frac{3}{20}\)