K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2018

\(A=\frac{20.30+20.40+40}{72.10+72.18+144}\)                                            \(B=\frac{60.2+60.8}{30.2+30.8}\)

\(A=\frac{20.\left(30+40+2\right)}{72.\left(10+18+2\right)}\)                                                \(B=\frac{60.\left(2+8\right)}{30.\left(2+8\right)}\)

\(A=\frac{20.72}{72.20}=1\)                                                               \(B=\frac{600}{300}=2\)

\(\Rightarrow A< B\)     

9 tháng 9 2018

\(A=\frac{20.30+20.40+40}{72.10+72.18+144}\)\(=\frac{20.\left(30+40+2\right)}{72.\left(10+18+2\right)}\)\(=\frac{20.72}{72.30}\)=\(\frac{20}{30}=\frac{2}{3}\)

\(B=\frac{60.2+60.8}{30.2+30.8}\)\(=\frac{60.\left(2+8\right)}{30.\left(2+8\right)}\)\(=\frac{60.10}{30.10}=\frac{60}{30}=2\)

Vì \(2>\frac{2}{3}\)nên A < B

8 tháng 3 2022

TL :

Ko biết thì đừng làm

Nhớ làm hết , chi tiết mới đc 1 SP

HT

8 tháng 3 2022

rep dẹp hết

4 tháng 5 2018

So sánh :

a, \(A=101\cdot50\)và \(B=50\cdot49+53\cdot50\)

\(A=101\cdot50\)và \(B=50\cdot\left(49+53\right)\)

\(A=101\cdot50\)và \(B=\) \(50\cdot102\) 

Vì 101 < 102 => A < B

b, Ý b mình chưa tìm ra cách giải nha !!!

12 tháng 8 2016

Ta có : \(\frac{n-1}{n!}=\frac{1}{\left(n-1\right)!}-\frac{1}{n!}\) với n là số tự nhiên khác 0

Khi đó : \(A=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{2015}{2016!}\)

\(=\frac{1}{1!}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+...+\frac{1}{2015!}-\frac{1}{2016!}\)

\(=1-\frac{1}{2016!}< 1\)

Lại có B > 1

=> A < B

27 tháng 4 2017

chắc chắn là A > B 

hãy ủng hộ mk bằng một niềm tin nhé

       ^ _ ^ hihi

27 tháng 4 2017

là a lớn hơn b

nhé các bạn thân mến.

18 tháng 5 2021

a,Với \(a>0;a\ne1\)

 \(M=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)

\(=\left(\frac{\sqrt{a}-1+a-\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)^2}\right).\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\frac{a-1}{a+\sqrt{a}}\)

b, Ta có : \(1=\frac{a+\sqrt{a}}{a+\sqrt{a}}\)mà \(a-1=\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)\)

\(a+\sqrt{a}=\sqrt{a}\left(\sqrt{a}+1\right)\)vì \(\sqrt{a}-1< \sqrt{a}\)

Vậy \(\frac{a-1}{a+\sqrt{a}}< 1\)hay \(M< 1\)

4 tháng 3 2018

Ta có : 

\(A=1+5+5^2+...+5^{32}\)

\(A=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{30}+5^{31}+5^{32}\right)\)

\(A=31+5^3\left(1+5+5^2\right)+...+5^{30}\left(1+5+5^2\right)\)

\(A=31+31.5^3+...+31.5^{30}\)

\(A=31\left(1+5^3+...+5^{30}\right)\) chia hết cho 31 

Vậy \(A\) chia hết cho 31

4 tháng 3 2018

\(a)\) Ta có : 

\(\frac{a}{b}< \frac{a+c}{b+c}\)

\(\Leftrightarrow\)\(a\left(b+c\right)< b\left(a+c\right)\)

\(\Leftrightarrow\)\(ab+ac< ab+bc\)

\(\Leftrightarrow\)\(ac< bc\)

\(\Leftrightarrow\)\(a< b\)

Mà \(a< b\) \(\Rightarrow\) \(\frac{a}{b}< 1\)

Vậy ...

7 tháng 5 2015

\(A=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2013}{2013}+\frac{1}{2013}+\frac{1}{2013}=\left(\frac{2013}{2014}+\frac{1}{2013}\right)+\left(\frac{2014}{2015}+\frac{1}{2013}\right)+1\)

Ta có: \(\frac{2013}{2014}+\frac{1}{2013}>\frac{2013}{2014}+\frac{1}{2014}=\frac{2014}{2014}=1\)

\(\frac{2014}{2015}+\frac{1}{2013}>\frac{2014}{2015}+\frac{1}{2015}=\frac{2015}{2015}=1\)

=> A > 1+ 1 + 1 = 3

\(B=\frac{2011+2012}{2012+2013}=\frac{2011}{2012+2013}+\frac{2012}{2012+2013}

21 tháng 7 2015

\(A=\frac{2011}{2012}+\frac{2012}{2013}\)  \(và\)   \(B=\frac{2011+2012}{2012+2013}\)

\(Ta\)    \(có\) \(:\)   \(B=\frac{2011}{2012+2013}+\frac{2012}{2012+2013}\)

                     \(B=\frac{2011}{4025}+\frac{2012}{4025}\)

\(Vì\)    \(\frac{2011}{2012}>\frac{2011}{4025}và\frac{2012}{2013}>\frac{2012}{4025}\)

\(Nên\)  \(\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011}{4025}+\frac{2012}{4025}\)

\(Vậy\)   \(A=\frac{2011}{2012}+\frac{2012}{2013}>B=\frac{2011+2012}{2012+2013}\)