cho tam giác ABC, I là giao điểm của tia phân giác góc B và góc C
gọi M là trung điểm của BC. biết góc BIM = 90o / BI = 2IM
góc BAC = ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a bài 2 nhá
a) Gọi D là trung điểm BI => góc IDM = 45 độ
DM // IC ( đường trung bình )
=> góc BIC = 135 độ
=> 180 -1/2( góc B + góc C ) =135 độ
=> góc B + góc C = 90 độ
=> góc A = 90 độ
a) Có thể tham khảo bài của bạn Kunzy nguyễn
b) Kẻ IH vuông góc với AC; IK vuông góc với BC
Do I là giao của 2 đường phân giác => IH = IK
Tam giác AEB vuông tại A => góc AEB + EBA = 90o
tam giác IMB vuông tại I => góc IMB + MBI = 90o
Mà EBA = MBI (do BI là p/g của góc B)
=> góc AEB = IMB => EIH = MIK
+) Xét tam giác vuông EIH và MIK có: góc EIH = MIK ; IH = IK ; EHI = MKI
=> tam giác EIH = MIK (g- c- g)
=> EI = IM Mà IM = 1/2 BI => EI = 1/2 BI => EI = 1/3 EB
+)Tam giác AEB có: IH // AB (do cùng vuông góc Với AC)
=> IH/ AB = EI/ EB (Hệ quả đL Ta lét)
=> IH/AB = 1/3 => BA = 3IH
a) Gọi D là trung điểm BI => góc IDM = 45 độ
DM // IC ( đường trung bình )
=> góc BIC = 135 độ
=> 180 -1/2( góc B + góc C ) =135 độ
=> góc B + góc C = 90 độ
=> góc A = 90 độ
b) tam giác ABE và IBM đồng dạng (3 góc = nhau ) nên AE=AB/2 . trên AC lấy N sao cho AE=EN => BE là trung tuyến ứng của tg ABN ,
ABN cân vì AN=AB
=> AI là phân giác góc A cũng là trung tuyến . => I là trọng tâm => BE=3IE .
a) Có thể tham khảo bài của bạn Kunzy nguyễn
b) Kẻ IH vuông góc với AC; IK vuông góc với BC
Do I là giao của 2 đường phân giác => IH = IK
Tam giác AEB vuông tại A => góc AEB + EBA = 90o
tam giác IMB vuông tại I => góc IMB + MBI = 90o
Mà EBA = MBI (do BI là p/g của góc B)
=> góc AEB = IMB => EIH = MIK
+) Xét tam giác vuông EIH và MIK có: góc EIH = MIK ; IH = IK ; EHI = MKI
=> tam giác EIH = MIK (g- c- g)
=> EI = IM Mà IM = 1/2 BI => EI = 1/2 BI => EI = 1/3 EB
+)Tam giác AEB có: IH // AB (do cùng vuông góc Với AC)
=> IH/ AB = EI/ EB (Hệ quả đL Ta lét)
=> IH/AB = 1/3 => BA = 3IH
tham khảo ne:
https://olm.vn/hoi-dap/question/154181.html
giống nà
a: Xét ΔABC có \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)
=>\(\widehat{ABC}+\widehat{ACB}=180^0-\widehat{BAC}\)
=>\(2\left(\widehat{IBC}+\widehat{ICB}\right)=180^0-\widehat{BAC}\)
=>\(\widehat{IBC}+\widehat{ICB}=90^0-\dfrac{1}{2}\cdot\widehat{BAC}\)
Xét ΔIBC có \(\widehat{BIC}+\widehat{IBC}+\widehat{ICB}=180^0\)
=>\(\widehat{BIC}=180^0-\left(\widehat{IBC}+\widehat{ICB}\right)\)
\(=180^0-90^0+\dfrac{1}{2}\cdot\widehat{BAC}=90^0+\dfrac{1}{2}\cdot\widehat{BAC}\)
b: Xét ΔIMB và ΔEMC có
MI=ME
\(\widehat{IMB}=\widehat{EMC}\)
MB=MC
Do đó: ΔIMB=ΔEMC
c: IM=1/2IE
mà IM=1/2BI
nên IB=IE
Xét ΔBIE vuông tại I có IB=IE
nên ΔBIE vuông cân tại I
=>\(\widehat{IEB}=45^0\)
Xét tứ giác BICE có
M là trung điểm chung của BC và IE
nên BICE là hình bình hành
=>BE//CI
=>\(\widehat{BEI}=\widehat{EIC}\)(hai góc so le trong)
mà \(\widehat{BEI}=45^0\)
nên \(\widehat{EIC}=45^0\)
\(\widehat{BIC}=\widehat{BIE}+\widehat{EIC}\)
\(=90^0+45^0=135^0\)
\(\widehat{BIC}=90^0+\dfrac{1}{2}\cdot\widehat{BAC}\left(cmt\right)\)
=>\(\dfrac{1}{2}\cdot\widehat{BAC}=135^0-90^0=45^0\)
=>\(\widehat{BAC}=90^0\)