K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2018

câu a bài 2 nhá

a) Gọi D là trung điểm BI => góc IDM = 45 độ
DM // IC ( đường trung bình )
=> góc BIC = 135 độ
=> 180 -1/2( góc B + góc C ) =135 độ
=> góc B + góc C = 90 độ
=> góc A = 90 độ

2 tháng 8 2015

A C B I H E K M N

a) Có thể tham khảo bài của bạn Kunzy nguyễn

b) Kẻ IH vuông góc với AC; IK vuông góc với BC

Do I là giao của 2 đường phân giác => IH = IK 

Tam giác AEB vuông tại A => góc AEB + EBA = 90o

tam giác IMB vuông tại I => góc IMB + MBI = 90o

Mà EBA = MBI (do BI là p/g của góc B)

=> góc AEB = IMB => EIH = MIK 

+) Xét tam giác vuông EIH và MIK có: góc EIH = MIK ; IH = IK ; EHI = MKI 

=> tam giác EIH = MIK (g- c- g)

=> EI = IM Mà IM = 1/2 BI => EI = 1/2 BI => EI = 1/3 EB

+)Tam giác AEB có: IH // AB (do cùng vuông góc Với AC)

=> IH/ AB = EI/ EB (Hệ quả đL Ta lét)

=> IH/AB = 1/3 => BA = 3IH

 

2 tháng 8 2015

a) Gọi D là trung điểm BI => góc IDM = 45 độ
DM // IC ( đường trung bình )
=> góc BIC = 135 độ
=> 180 -1/2( góc B + góc C ) =135 độ
=> góc B + góc C = 90 độ
=> góc A = 90 độ 

b) tam giác ABE và IBM đồng dạng (3 góc = nhau ) nên AE=AB/2 . trên AC lấy N sao cho AE=EN => BE là trung tuyến ứng của tg ABN , 
ABN cân vì AN=AB 
=> AI là phân giác góc A cũng là trung tuyến . => I là trọng tâm => BE=3IE . 

12 tháng 3 2018

a) Có thể tham khảo bài của bạn Kunzy nguyễn
b) Kẻ IH vuông góc với AC; IK vuông góc với BC
Do I là giao của 2 đường phân giác => IH = IK 
Tam giác AEB vuông tại A => góc AEB + EBA = 90o
tam giác IMB vuông tại I => góc IMB + MBI = 90o
Mà EBA = MBI (do BI là p/g của góc B)
=> góc AEB = IMB => EIH = MIK 
+) Xét tam giác vuông EIH và MIK có: góc EIH = MIK ; IH = IK ; EHI = MKI 
=> tam giác EIH = MIK (g- c- g)
=> EI = IM Mà IM = 1/2 BI => EI = 1/2 BI => EI = 1/3 EB
+)Tam giác AEB có: IH // AB (do cùng vuông góc Với AC)
=> IH/ AB = EI/ EB (Hệ quả đL Ta lét)
=> IH/AB = 1/3 => BA = 3IH

9 tháng 6 2017

tham khảo ne:

https://olm.vn/hoi-dap/question/154181.html

giống nà

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10cm

Xét ΔABC có 

BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{DA}{AB}=\dfrac{DC}{BC}\)(Tính chất đường phân giác của tam giác)

hay \(\dfrac{DA}{6}=\dfrac{DC}{10}\)

Ta có: D nằm giữa A và C(gt)

nên DA+DC=AC

hay DA+DC=8(cm)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{DA}{6}=\dfrac{DC}{10}=\dfrac{DA+DC}{6+10}=\dfrac{8}{16}=\dfrac{1}{2}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{DA}{6}=\dfrac{1}{2}\\\dfrac{DC}{10}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}DA=6\cdot\dfrac{1}{2}=3\left(cm\right)\\DC=10\cdot\dfrac{1}{2}=5\left(cm\right)\end{matrix}\right.\)

Vậy: DA=3cm; DC=5cm

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=36+64=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Xét ΔABC có BD là phân giác

nên \(\dfrac{DA}{AB}=\dfrac{DC}{BC}\)

=>\(\dfrac{DA}{6}=\dfrac{DC}{10}\)

=>\(\dfrac{DA}{3}=\dfrac{DC}{5}\)

mà DA+DC=AC=8cm(D nằm giữa A và C)

nên \(\dfrac{DA}{3}=\dfrac{DC}{5}=\dfrac{DA+DC}{3+5}=\dfrac{8}{8}=1\)

=>\(DA=3\cdot1=3cm;DC=5\cdot1=5cm\)

b: ΔABC vuông tại A

mà AM là đường trung tuyến

nên \(AM=MB=MC=\dfrac{BC}{2}=5\left(cm\right)\)

mà DC=5cm

nên CM=CD

Xét ΔCDI và ΔCMI có

CD=CM

\(\widehat{DCI}=\widehat{MCI}\)

CI chung

Do đó: ΔCDI=ΔCMI

=>\(\widehat{CID}=\widehat{CIM}\) và \(\widehat{IMC}=\widehat{IDC}\)(3)

Ta có: \(\widehat{IDC}=\widehat{BAD}+\widehat{ABD}\)(góc IDC là góc ngoài tại đỉnh D của ΔABD)

nên \(\widehat{IDC}=\widehat{BAD}+\widehat{ABD}=90^0+\widehat{ABD}\)(2)

Xét ΔBIM có \(\widehat{IMC}\) là góc ngoài tại đỉnh M

nên \(\widehat{IMC}=\widehat{MIB}+\widehat{MBI}\left(1\right)\)

Từ (1),(2),(3) suy ra \(\widehat{MIB}+\widehat{MBI}=90^0+\widehat{ABD}\)

mà \(\widehat{MBI}=\widehat{ABD}\)

nên \(\widehat{MIB}=90^0\)

a: Xét ΔABC vuông tại A có AH là đường cao

nên CA^2=CH*CB

b: \(BC=\sqrt{15^2+20^2}=25\left(cm\right)\)

\(AD=\dfrac{2\cdot15\cdot20}{15+20}\cdot cos45=\dfrac{60}{7}\sqrt{2}\)(cm)

AH=15*20/25=12(cm)

\(HD=\sqrt{AD^2-AH^2}=\dfrac{12}{7}\left(cm\right)\)

c: ΔABI vuông tại A có AK là đường cao

nên BK*BI=BA^2=BH*BC

=>BK/BC=BH/BI

=>ΔBKH đồng dạng với ΔBCI