tinh giùm cái A= 1/2+ 1/6 + 1/12 + 1/12 + 1/30 + 1/42 + 1/42 + 1/56 + 1/72
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
em lớp 6 nha
B= 1/2 + 1/6 + 1/12 +1/20 + 1/30 + 1/42 + 1/56 + 1/72
B= 1/1*2 + 1/2*3 + 1/3*4 + 1/4*5 + 1/5*6 + 1/6*7 + 1/7*8 + 1/8*9
B=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9
B=1+0-0-0-0-0-0-0-1/9
B=1-1/9
B=8/9
k em nha
A = 1/90 - 1/72 - 1/56 - ... - 1/6 - 1/2
A = 1/90 - (1/2 + 1/6 + ... + 1/56 + 1/72)
A = 1/90 - (1/1.2 + 1/2.3 + ... + 1/7.8 + 1/8.9)
A = 1/90 - (1 - 1/2 + 1/2 - 1/3 + ... + 1/7 - 1/8 + 1/8 - 1/9)
A = 1/90 - (1 - 1/9)
A = 1/90 - 8/9
A = 1/90 - 80/90
A = -79/90
A = 1/90 - 1/72 - 1/56 - ... - 1/6 - 1/2
A = 1/90 - (1/2 + 1/6 + ... + 1/56 + 1/72)
A = 1/90 - (1/1.2 + 1/2.3 + ... + 1/7.8 + 1/8.9)
A = 1/90 - (1 - 1/2 + 1/2 - 1/3 + ... + 1/7 - 1/8 + 1/8 - 1/9)
A = 1/90 - (1 - 1/9)
A = 1/90 - 8/9
A = 1/90 - 80/90
A = -79/90
\(\dfrac{9}{10}-\dfrac{1}{90}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-\dfrac{1}{30}-\dfrac{1}{20}-\dfrac{1}{12}-\dfrac{1}{6}-\dfrac{1}{2}\)
\(=\dfrac{9}{10}-\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{72}+\dfrac{1}{90}\right)\)
\(=\dfrac{9}{10}-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{8.9}+\dfrac{1}{9.10}\right)\)
\(=\dfrac{9}{10}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right)\)
\(=\dfrac{9}{10}-\left(1-\dfrac{1}{10}\right)=\dfrac{9}{10}-\dfrac{9}{10}=0\)
\(\dfrac{9}{10}-\dfrac{1}{90}-\dfrac{1}{72}-\dfrac{1}{56}-...-\dfrac{1}{6}-\dfrac{1}{2}=-\left(-\dfrac{9}{10}+\dfrac{1}{90}+\dfrac{1}{72}+\dfrac{1}{56}+...+\dfrac{1}{6}+\dfrac{1}{2}\right)\)
\(=-\left(-\dfrac{9}{10}+\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\right)\)
\(=-\left(-\dfrac{9}{10}+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\right)\)
\(=-\left(-\dfrac{9}{10}+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right)\)
\(=-\left(-\dfrac{9}{10}+1-\dfrac{1}{10}\right)=-\left(-\dfrac{9}{10}+\dfrac{9}{10}\right)=0\)
\(\frac{8}{9}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
\(=\frac{8}{9}-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\right)\)
\(=\frac{8}{9}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}\right)\)
\(=\frac{8}{9}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{8}-\frac{1}{9}\right)\)
\(=\frac{8}{9}-\left(1-\frac{1}{9}\right)\)
\(=\frac{8}{9}-\frac{8}{9}=0\)
\(\frac{8}{9}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
\(=\frac{8}{9}-\left(\frac{1}{72}+\frac{1}{56}+\frac{1}{42}+\frac{1}{30}+\frac{1}{20}+\frac{1}{12}+\frac{1}{6}\right)\)
\(=\frac{8}{9}-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\right)\)
\(=\frac{8}{9}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\right)\)
\(=\frac{8}{9}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\right)\)
\(=\frac{8}{9}-\left(1-\frac{1}{9}\right)\)
\(=\frac{8}{9}-\frac{8}{9}\)
\(=0\)
\(\frac{8}{9}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
\(=\frac{8}{1.9}-\frac{1}{8.9}-\frac{1}{7.8}-\frac{1}{5.6}-\frac{1}{4.5}-\frac{1}{3.4}-\frac{1}{2.3}-\frac{1}{1.2}\)
\(=1-\frac{1}{9}-\frac{1}{8}+\frac{1}{9}-\frac{1}{7}+\frac{1}{8}-\frac{1}{5}+\frac{1}{6}-\frac{1}{4}+\frac{1}{5}-\frac{1}{3}+\frac{1}{4}-\frac{1}{2}+\frac{1}{3}-1+\frac{1}{2}\)
\(=0\)
8/9 - 1/72 - 1/56 - ... - 1/6 - 1/2
= 8/9 - [1/8*9 + 1/7*8 + ... + 1/2*3 + 1/1*2]
= 8/9 - [1/8 - 1/9 + 1/7 - 1/8 + ...+ 1/2 - 1/3 + 1 - 1/2]
= 8/9 - [-1/9 + 1]
= 8/9 - 8/9
= 0
Đặt S=1/6+1/12+1/20+1/30+1/42+1/56+1/72
=> S=1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9
=> S=1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9
=> S=1/2-1/9
=> S=7/18
Vì 7/18<1/2
=> S<1/2
Mọi người k mik nhé, :)))
1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72
= 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8 + 1/8.9
= 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/8-1/9
= 1/2 - 1/9
= 7/18
Bn tự so sánh vs 1/2 nha
A = 1/90 - 1/72 - 1/56 - 1/42 - 1/30 - 1/20 - 1/12 - 1/6 - 1/2
A = 1/90 - ( 1/72 + 1/56 + 1/42 + 1/30 + 1/20 + 1/12 + 1/6 + 1/2)
A = 1/90 - ( 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72)
A = 1/90 - ( 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8 + 1/8.9) A = 1/90 - ( 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/8 - 1/9) A = 1/90 - ( 1 - 1/9)
A = 1/90 - 8/9
A = 1/90 - 80/90
A= -79/90
Chi tiết từng bước luôn nha bạn !Chúc bạn học tốt ! Tick cho mình nhé
\(1\frac{1}{2}+2\frac{1}{6}+3\frac{1}{12}+4\frac{2}{20}+5\frac{1}{30}+6\frac{1}{42}+7\frac{1}{56}+8\frac{1}{72}+9\frac{1}{90}+\frac{1}{10}\)\(=\frac{3}{2}+\frac{13}{6}+\frac{37}{12}+\frac{81}{20}+\frac{151}{30}+\frac{253}{42}+\frac{393}{56}+\frac{577}{72}+\frac{811}{90}+\frac{1}{10}=46\)
k nha
๖ۣۜH๖ۣۜU๖ۣۜY ๖ۣۜR๖ۣۜI๖ۣۜO
Đầu tiên , cộng các phần nguyên lại với nhau , ta có :
( 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 ) + ( 12 +16 +112 +120 +130 +142 +156 +172 +190 +110 )
= 45 + (16 +130 )+12 +112 +120 +142 +156 +172 +190 +110
sau khi cộng trong ngoặc , ta được 6 / 30 , rút gọn tối giản còn 1 / 5
= 45 + (15 +120 )+12 +112 +142 +156 +172 +190 +110
sau khi cộng trong ngoặc và rút gọn tối giản , ta được 1 / 4
= 45 + (14 +12 )+112 +142 +156 +172 +190 +110
sau khi cộng trong ngoặc rồi rút gọn , ta được 3 / 4
= 45 + (34 +112 )+142 +156 +172 +190 +110
rút gọn lại ta được 5 / 6
= 45 + (56 +142 )+156 +172 +190 +110
rút gọn tối giản ra 6 / 7
= 45 + (67 +156 )+172 +190 +110
sau khi tính trong ngoặc rút gọn được 7 / 8
= 45 + (78 +172 )+190 +110
tính trong ngoặc rồi rút gọn ra 8 / 9
= 45 + (89 +190 )+110
cũng rút gọn tiếp ta được 9 / 10
= 45 + (910 +110 )
= 45 + 1
= 46
Đặt biểu thức cần tính là A. Ta có :
A = 9/10 -( 1/90 + 1/72 + ... + 1/2)
= 9/10 - { 1/( 9.10) + 1/(9.8) + ... + 1/( 2.1)}
= 9/10 - ( 1/9 - 1/10 + 1/8 - 1/9 + ...+ 1 - 1/2) ( 1/90 = 1/(9.10) = 1/9 - 1/10)
= 9/10 - ( 1 - 1/10)
sua de
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)
\(=1-\frac{1}{9}\)
\(=\frac{8}{9}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)
\(=1-\frac{1}{9}=\frac{8}{9}\)