Phân tích đa thức B thành tích của hai tam thức bậc hai với hệ số nguyên
\(B=x^4-6x^3+11x^2-6x+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=x^4-6x^3+11x^2-6x+1\)
\(A=\left(x^4-3x^3+x^2\right)-\left(3x^3-9x^2+3x\right)+x^2-3x+1\)
\(A=x^2\left(x^2-3x+1\right)-3x\left(x^2-3x+1\right)+\left(x^2-3x+1\right)\)
\(A=\left(x^2-3x+1\right)^2\)
b) \(B=x^4-x^3+2x^2-11x-5\)
\(B=x^2\left(x^2-2x-1\right)+x\left(x^2-2x-1\right)+5\left(x^2-2x-1\right)\)
\(B=\left(x^2-2x-1\right)\left(x^2+x+5\right)\)
\(C=x^4-x^3+2x^2-11x-5\)
\(=x^4+x^3+5x^2-2x^3-2x^2-10x-x^2-x-5\)
\(=x^2\left(x^2+x+5\right)-2x\left(x^2+x+5\right)-\left(x^2+x+5\right)\)
\(=\left(x^2+x+5\right)\left(x^2-2x-1\right)\)
Bài này phải dùng phương pháp hệ số bất định (bài này khó)
C có dạng \(\left(x^2+ax+b\right)\left(x^2+cx+d\right)=x^4+\left(a+c\right)x^3+\left(ac+b+d\right)x^2+\left(ad+bc\right)x+bd\)
Đồng nhất với đa thức C thì phải giải 4 cái sau:
\(a+c=-1\left(1\right),ac+b+d=2\left(2\right),ad+bc=-11\left(3\right),bd=-5\left(4\right)\)
Giải (4) trước (vì \(b,d\in Z\)
Rồi thay vào thử tìm a,c (hơi lâu vì bài này trong 4 ước chỉ tìm được duy nhất 1 giá trị của b và d)
Lời giải thích trên hơi khó hiểu đúng ko? Chúc bạn học tốt.
\(B=x^4-6x^3+11x^2-6x+1\)
\(=x^4-x^3+x^2-5x^3+5x^2-5x+x^2-x+1\)
\(=x^2\left(x^2-x+1\right)-5x\left(x^2-x+1\right)+\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^2-5x+1\right)\)
\(B=x^4-6x^3+11x^2-6x+1\)
\(=x^4-6x^3+9x^2+2x^2-6x+1\)
\(=\left(x^2\right)^2-2.x^2.3x+\left(3x\right)^2+2\left(x^2-3x\right)+1\)
\(=\left(x^2-3x\right)^2+2\left(x^2-3x\right).1+1^2\)
\(=\left(x^2-3x+1\right)^2\)