K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2015

Gọi UCLN của chúng là d rồi khử n là tìm được d=1 or d=-1 

8 tháng 2 2015

a/rút gọn n ta còn 3+1/5+10=4/15(tối giản suy ra đpcm)

b/tương tự như câu a nhưng thay số 

c/rút gọn n còn 3+2/4+3^2+1=5/14( tối giản suy ra đpcm)

d/rút gọn n ta còn 2+1/2^2-1=3/3=1/1(tối giản suy ra đpcm)

Tèn ten xong nhưng ko bik đúng hay sai nha!!!!!!!!!!!!!!!!!!!!!!!!!!!

15 tháng 8 2018

a,Gọi d là ƯC(3n+1;5n+2)

3n+1 chia hết d; 5n+2 chia hết d

5(3n+1) chia hết d;3(5n+2) chia hết d

15n+5 chia hết d; 15n+6 chia hết d

 1 chia hết d

d=1

tối giản với n thuộc N

B; gọi d là ƯC(12n+1;30n+2)

12n+1 chia hết d; 30n+2 chia hết d

5(12n+1) chia hết d; 2(30n+2) chia hết d

60n+5 chia hết d; 60n+4 chia hết d

1 chia hết d

d=1

tối giản ...

D;2n+1 chia hết d;2n^2-1 chia hết d

n(2n+1) chia hết d ; 2n^2-1 chia hết d 

2n^2+n chia hết d ;2n^2-1 chia hết d

n+1 chia hết d 

2(n+1)=2n+2 chia hết d

1 chia hết d

tối giản

15 tháng 8 2018

k cho mk nha

12 tháng 2 2017

mk biết làm bài này đấy nhưng hơi dài

12 tháng 2 2017

Hướng dẫn: Đặt (tử, mẫu)=d

Phương pháp: Tìm được d = 1.

Cách làm: Nhân tử với a, nhân mẫu với b (a, b là số nguyên) sao cho khi trừ đi 2 kết quả mới triệt tiêu được 2 biểu thức chứa n. 

                Cuối cùng sẽ tìm được 1 là bội của b => d=1

Còn lại cậu tự làm nhé!

6 tháng 6 2020

a) *) \(\frac{n-1}{3-2n}\)

Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))

\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)

=> ƯCLN (n-1;3-2n)=1

=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên

*) \(\frac{3n+7}{5n+12}\)

Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)

\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)

\(\Rightarrow d=1\)

=> ƯCLN (3n+7;5n+12)=1

=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên

6 tháng 6 2020

b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)

\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)

Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên

2 nguyên => \(\frac{7}{n-1}\)nguyên

=> 7 chia hết cho n-1

n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng

n-1-7-117
n-6028

vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên

5 tháng 1 2018

a, \(\frac{3n}{3n+1}\) 

Vì 3n + 1 hơn 3n 1 đơn vị, n \(\in\) Z 

\(\Rightarrow\) ƯCLN ( 3n; 3n + 1 ) = 1

\(\Rightarrow\frac{3n}{3n+1}\) là phân số tối giản

Vậy \(\frac{3n}{3n+1}\) là phân số tối giản ( đpcm )

b, \(\frac{4n+1}{6n+1}=\frac{24n+6}{24n+4}\)

Đề bài sai

Các câu c,d,e,g,h tương tự

5 tháng 1 2018

Các phân số đó tối giản khi UWCLN của tử và mẫu của nó bằng 1 

Vậy bạn hãy chứng minh UWCLN(tử,mẫu)=1

12 tháng 11 2021

b: Vì 12n+1 là số lẻ

và 30n+2 là số chẵn

nên 12n+1/30n+2 là phân số tối giản

12 tháng 2 2017

Gợi ý thôi chứ giải ra dài lắm !!

\(\frac{a}{b}\) tối giản khi và chỉ khi UCLN(a;b)=1

26 tháng 11 2017

Em chưa học làm dạng này , em làm thử thôi nhá, sai xin chỉ dạy thêm nha

2 . \(\dfrac{n^7+n^2+1}{n^8+n+1}=\dfrac{n^7-n+n^2+n+1}{n^8-n^2+n^2+n+1}\)

\(=\dfrac{n\left(n^6-1\right)+n^2+n+1}{n^2\left(n^6-1\right)+n^2+n+1}=\dfrac{n\left(n^3+1\right)\left(n^3-1\right)+n^2+n+1}{n^2\left(n^3+1\right)\left(n^3-1\right)+n^2+n+1}\)\(=\dfrac{n\left(n^3+1\right)\left(n-1\right)\left(n^2+n+1\right)+n^2+n+1}{n^2\left(n^3+1\right)\left(n-1\right)\left(n^2+n+1\right)+n^2+n+1}\)

\(=\dfrac{\left(n^2+n+1\right)\left[\left(n^4+n\right)\left(n-1\right)\right]}{\left(n^2+n+1\right)\left[\left(n^5+n^2\right)\left(n-1\right)+1\right]}\)

\(=\dfrac{n^5-n^4+n^2-n}{n^6-n^5+n^3-n^2+1}=\dfrac{n^4\left(n-1\right)+n\left(n-1\right)}{n^5\left(n-1\right)+n^2\left(n-1\right)+1}\)

\(=\dfrac{\left(n-1\right)\left(n^4+n\right)}{\left(n-1\right)\left(n^5+n^2\right)+1}\)

Vậy ,với mọi số nguyên dương n thì phân thức trên sẽ không tối giản

14 tháng 11 2017

a) ta chứng mk tử và mẫu là 2 số nguyên tố cùng nhau 

mk làm mẫu 1 câu nha

Gọi d là UCLN(n+1;2n+3)

=>n+1 \(⋮\)<=>2(n+1)\(⋮\)d<=>4n+2 chia hết cho d

=>4n+3 chia hết cho d

=> 4n+3-4n-2 chia hết cho d

<=> 1 chia hết cho d=> d= 1

d=1=>\(\frac{n+1}{2n+3}\)tối giản

14 tháng 11 2017

b) Gọi d là UCLN(2n+3;4n+8)

=>2n+3 \(⋮\)d<=>2(2n+3)\(⋮\)d<=> 4n+6 \(⋮\)d

=>4n+8\(⋮\)d

=>4n+8-4n-6\(⋮\)d<=>2 chia hết cho d=> d=1,2

mà 2n+3 là số lẻ nên ko có ước chẵn là 2=> d=1

vây \(\frac{2n+3}{4n+8}\)tối giản