cho a,b là các chữ số, chứng minh: nếu 6a + 11b chia hết cho 31 thì b0a chia hết cho 31
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
NN
Nguyễn Ngọc Anh Minh
CTVHS
VIP
2 tháng 11 2019
b0a= 100.b+a=5.31.b+31.a-(30.a+55.b)=31.(a+5b)-5.(6.a+11.b)
Ta thấy 31.(a+5b) chia hết cho 31 và 6.a+11.b chia hết cho 31 nên 5.(6.a+11.b) chia hết cho 31 => b0a chia hết cho 31
DJ
0
VM
0
13 tháng 9 2016
gọi ab là xy
6x+11y chia hế
31y chia hết cho 31 ﴾vì 31y cũng chia hết cho 31﴿
=> 6x + 42y chia hết cho 31
=> 6﴾x+7y﴿ chia hết cho 31
Vì 6 và 31 nguyên tố cũng nhau nên
x+7y buộc phải chia hết cho 31 ﴾ĐPCM﴿
TH
Thầy Hùng Olm
Manager
VIP
7 tháng 1 2023
Ta có 6a + 11b chia hết cho 31
Vậy: 6a + 42b - 31b = 6x(a+7b) - 31xb chia hết cho 31
nên: 6x(a + 7b) chia hết cho 31
Do vậy: a + 7b chia hết cho 31 (đpcm)