K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2018

                 \(\frac{1}{8}.16^n=2^n\)

           \(\frac{1}{2^3}.\left(2^4\right)^n=2^n\)

                \(\frac{1}{2^3}.2^{4n}=2^n\)

                       \(\frac{1}{2^3}=2^n:2^{4n}\)

                       \(\frac{1}{2^3}=2^{n-4n}\)

                       \(\frac{1}{2^3}=2^{n\left(1-4\right)}\)

                       \(\frac{1}{2^3}=2^{\left(-3\right)n}\)

          \(2^{\left(-3\right)n}.2^3=1\)

          \(2^{\left(-3\right)n+3}=1\)

          \(2^{3\left(-n+1\right)}=2^0\)

\(\Rightarrow3\left(-n+1\right)=0\)

      \(\Rightarrow-n+1=0\)

                      \(-n=-1\)

                          \(n=1\)

3 tháng 3 2018

Để A nguyên dương

=> n + 1 \(⋮\)2n - 1

Tiếp theo dễ rồi nhé :)

3 tháng 3 2018
Để A thuộc N* <=> n+1/2n-1 thuộc N* Xét 2A= 2n+2/2n-1 Ta cm 2n+2/2n-1 thuộc N* <=> 2n-1+3/2n-1 thuộc N* <=> 1+ 3/ 2n-1 thuộc N* <=> 2n-1 thuộc Ư(3) Ư(3) = { 1 -1 3 -3 } => 2n-1 thuộc {1 -1 3 - 3 } Sau đó tìm n rồi xét xem với gtri nào của n thì A lớn hơn 0 là xog r đó bạn
24 tháng 2 2021

mình thua

18 tháng 4 2021

bo tay

19 tháng 4 2017

Muốn \(\frac{n^2+2n+1}{n+23}\) có giá trị nguyên thì:

\(n^2+2n+1⋮n+23\Rightarrow n^2+2n+1-n.\left(n+23\right)⋮n+23\)

\(\Rightarrow n^2+2n+1-n^2-23n⋮n+23\)

\(\Rightarrow-21n+1⋮n+23\Rightarrow-21n+1+21\left(n+23\right)⋮n+23\)

\(\Rightarrow-21n+1+21n+23⋮n+23\)

\(\Rightarrow24⋮n+23\Rightarrow n+23\inƯ\left(24\right)\)

Mà n lớn nhất nên: n+23 lớn nhất  => n+23 = 24 => n=1

Vậy n = 1

19 tháng 4 2017

Cho mình xin lỗi:

\(-21n+1⋮n+23\Rightarrow-21n+1+21\left(n+23\right)⋮n+23\)

\(\Rightarrow-21n+1+21n+483⋮n+23\Rightarrow484⋮n+23\)

Mà n là số nguyên dương lớn nhất nên: n+23=484 => n = 461

Vậy n = 461

a) Gọi d là ước nguyên tố của 2n+9/n+1. Ta có:

                                           2n+9-2(n+1) chia hết cho d => d=7

Ta thấy 2n+9 chia hết cho 7 khi đó n+1 chia hết cho 7.

<=> 2n+9-7 chia hết cho 7.

<=>2(n+1) chia hết cho 7 <=> n+1 chia hết cho 7 <=> n=7k-1(k thuộc N)

Vậy nếu n khác 7k-1 thì A là phân số.

Để A là số nguyên thì 2n^2-n+4n-2+5 chia hết cho 2n-1

=>\(2n-1\in\left\{1;-1;5;-5\right\}\)

=>\(n\in\left\{1;0;3;-2\right\}\)

7 tháng 1 2023

      `2n^2+3n+3 | 2n-1`

`-`   `2n^2-n`           `n+2`

     ------------------

                `4n+3`

          `-`   `4n-2`

              ------------

                       `5`

`<=> (2n^2+3n+3) : (2n-1)=5`

`<=> 5 ⋮ (2n-1)=> 2n-1 ∈ Ư(5)`\(=\left\{1,5\right\}\)

`+, 2n-1=1=>2n=2=>n=1`

`+, 2n-1=-1=>2n=0=>n=0`

`+, 2n-1=5=>2n=6=>n=3`

`+,2n-1=-5=>2n=-4=>n=-2`

vậy \(n\in\left\{1;0;3;-2\right\}\)

27 tháng 4 2018

Chọn B.