Tìm x /x+2/ + /x+5/=3x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
a: =>x^2+3x-4x-12-(x^2-5x+x-5)=8
=>x^2-x-12-x^2+4x+5=8
=>3x-7=8
=>3x=15
=>x=5
b: =>3x^2+3x-2x-2-3x^2-21x=13
=>-20x=15
=>x=-3/4
c: =>x^2-25-x^2-2x=9
=>-2x=25+9=34
=>x=-17
d: =>x^3-1-x^3+3x=1
=>3x-1=1
=>3x=2
=>x=2/3
a: =>x^2-25-x^2-3x=10
=>-3x=35
=>x=-35/3
b: =>4x^2-9-4(x^2+4x+4)=5
=>4x^2-9-4x^2-16x-16-5=0
=>-16x-30=0
=>x=-15/8
c: =>9x^2+45x-9x^2+4=7
=>45x=3
=>x=1/15
d: =>x^3+3x^2+3x+1-x^3-3x^2+5x=8
=>8x=7
=>x=7/8
\(\left(5-x\right)\left(x-2\right)+\left(x-7\right)\left(x+7\right)=\left(3x-1\right)^2-\left(3x-2\right)\left(3x+2\right)\\ \Leftrightarrow-x^2+7x-10+x^2-49=9x^2-6x+1-9x^2+4\\\Leftrightarrow7x-59=-6x+5\\ \Leftrightarrow13x=44\\ \Leftrightarrow x=\dfrac{64}{13} \)
(3x+2).(x+1)=3x.(5+x)
\(\Rightarrow\)\(3x^2+3x+2x+2=15x+3x^2\)
\(\Rightarrow3x^2+5x+2=15x+3x^2\)
\(\Rightarrow5x-15x+2=3x^2-3x^2\)
\(\Rightarrow-10x+2=0\)
\(-10x=-2\)
\(x=\frac{1}{5}\)
b, \(\left(x-5\right)\left(x-4\right)-\left(x+1\right)\left(x-2\right)=7\)
\(\Rightarrow x^2-9x+20-x^2+x+2=7\)
\(\Rightarrow-8x+22=7\)
\(\Rightarrow-8x=-15\)
\(\Rightarrow x=\frac{15}{8}\)
c, \(\left(3x-4\right)\left(x-2\right)=3x\left(x-9\right)-3\)
\(\Rightarrow3x^2-10x+8=3x^2-27x-3\)
\(\Rightarrow3x^2-10x-3x^2+27x=\left(-3\right)+\left(-8\right)\)
\(\Rightarrow17x=-11\)
\(\Rightarrow x=-\frac{11}{17}\)
d, \(\left(x-3\right)\left(x^2+3x+9\right)+x\left(5-x^2\right)=6x\)
\(\Rightarrow x^3+3x^2+9x-3x^2-9x-27+5x-x^3=6x\)
\(\Rightarrow6x=-27\)
\(\Rightarrow x=-\frac{27}{6}\)
\(\Rightarrow x=-\frac{9}{2}\)
e, \(\left(3x-5\right)\left(x+1\right)-\left(3x-1\right)\left(x+1\right)=x-4\)
\(\Rightarrow3x^2-2x-5-3x^2-2x+1=x-4\)
\(\Rightarrow-4=x-4\)
\(\Rightarrow x=0\)
b) (x - 5)(x - 4) - (x + 1)(x - 2) = 7
<=> x2 - 9x + 20 - x2 + x + 2 - 7 = 0
<=> 8x - 15 = 0 <=> x = 15/8
c) (3x - 4)(x - 2) = 3x(x - 9) - 3
<=> 3x2 - 10x + 8 = 3x2 - 27x - 3
<=> 17x = -11 <=> x = -11/17
d) (x - 3)(x2 + 3x + 9) + x(5 - x2) = 6x
<=> x3 - 27 - x3 + 5x - 6x = 0
<=> x = -27
e) (3x - 5)(x + 1) - (3x - 1)(x + 1) = x - 4
<=> (x + 1)(3x - 5 - 3x + 1) - x + 4 = 0
<=> -4x - 4 - x + 4 = 0 <=> x = 0
3x(x-5)-2(x-6)=x(5+3x)
(3x2-15x)-(2x-12)=5x+3x2
3x2-15x-2x+12=5x+3x2
3x2-15x-2x-5x-3x2=12
-22x=12
x=6/-11
\(a,2\left(x-1\right)-x\left(3-x\right)=x^2\)
\(\Leftrightarrow2x-2-3x+x^2=x^2\)
\(\Leftrightarrow\left(2x-3x\right)+\left(x^2-x^2\right)-2=0\)
\(\Leftrightarrow-\left(x+2\right)=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
\(b,3x\left(x+5\right)-2\left(x+5\right)=3x^2\)
\(\Leftrightarrow3x^2+15x-2x-10=3x^2\)
\(\Leftrightarrow\left(3x^2-3x^2\right)+\left(15x-2x\right)-10=0\)
\(\Leftrightarrow13x-10=0\Leftrightarrow13x=10\Leftrightarrow x=\frac{10}{13}\)
ĐKXĐ: \(x\notin\left\{2;5\right\}\)
Ta có: \(\dfrac{3x}{x-2}-\dfrac{2}{x-5}=\dfrac{3x}{\left(x-2\right)\left(5-x\right)}\)
\(\Leftrightarrow\dfrac{3x\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}-\dfrac{2\left(x-2\right)}{\left(x-2\right)\left(x-5\right)}+\dfrac{3x}{\left(x-2\right)\left(x-5\right)}=0\)
Suy ra: \(3x^2-15x-2x+4+3x=0\)
\(\Leftrightarrow3x^2-14x+4=0\)
\(\Delta=196-4\cdot3\cdot4=196-48=148\)
Vì \(\Delta>0\) nên phương trình có hai nghiệm phân biệt là
\(\left\{{}\begin{matrix}x_1=\dfrac{14-\sqrt{148}}{6}=\dfrac{7-\sqrt{37}}{3}\left(nhận\right)\\x_2=\dfrac{14+\sqrt{148}}{6}=\dfrac{7+\sqrt{37}}{3}\left(nhận\right)\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{7-\sqrt{37}}{3};\dfrac{7+\sqrt{37}}{3}\right\}\)
Lớp 8 chưa học delta nên mk sẽ trình bày theo cách khác nha!
Rút gọn pt trên ta được: 3x2 - 14x + 4 = 0 (Theo kết quả của Nguyễn Lê Phước Thịnh CTV)
\(\Leftrightarrow\) 3(x2 - \(\dfrac{14}{3}\)x + \(\dfrac{4}{3}\)) = 0
\(\Leftrightarrow\) x2 - 2.\(\dfrac{14}{6}\)x + \(\dfrac{196}{36}\) - \(\dfrac{37}{9}\) = 0
\(\Leftrightarrow\) (x - \(\dfrac{14}{6}\))2 - \(\left(\dfrac{\sqrt{37}}{3}\right)^2\) = 0
\(\Leftrightarrow\) (x - \(\dfrac{14}{6}\) - \(\dfrac{\sqrt{37}}{3}\))(x - \(\dfrac{14}{6}\) + \(\dfrac{\sqrt{37}}{3}\)) = 0
\(\Leftrightarrow\) (x - \(\dfrac{7}{3}\) - \(\dfrac{\sqrt{37}}{3}\))(x - \(\dfrac{7}{3}\) + \(\dfrac{\sqrt{37}}{3}\)) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=\dfrac{7+\sqrt{37}}{3}\\x=\dfrac{7-\sqrt{37}}{3}\end{matrix}\right.\) (TM)
Vậy ...
Chúc bn học tốt!
\(\left|x+2\right|+\left|x+5\right|=3x\)
Ta có:\(\hept{\begin{cases}\left|x+2\right|\ge0\\\left|x+5\right|\ge0\end{cases}}\)
\(\Rightarrow\left|x+2\right|+\left|x+5\right|\ge0\)
\(\Rightarrow3x\ge0\Rightarrow x\ge0\)
\(\Rightarrow x+2+x+5=3x\)
\(\Rightarrow2x+7=3x\Rightarrow3x-2x=7\Rightarrow x=7\)