GIÚP MÌNH GIẢI BÀI NÀY NHA
Bài 1 : Tìm x, biết
2x( x - 5 ) - x( 3 + 2x ) = 26
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(\frac{1}{7}x-\frac{2}{3}\right)\left(-\frac{1}{5}x+\frac{3}{5}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\frac{1}{7}x-\frac{2}{3}=0\\-\frac{1}{5}x+\frac{3}{5}=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}\frac{1}{7}x=\frac{2}{3}\\-\frac{1}{5}x=-\frac{3}{5}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{14}{3}\\x=3\end{cases}}\)
b)\(\frac{1}{10}x-\frac{4}{5}x+1=0\)
\(\Leftrightarrow x.\left(\frac{1}{10}-\frac{4}{5}\right)+1=0\)
\(\Rightarrow-\frac{7}{10}x=-1\)
\(\Rightarrow x=\frac{10}{7}\)
c)\(\left(2x-\frac{1}{3}\right).\left(5x+\frac{2}{7}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-\frac{1}{3}=0\\5x+\frac{2}{7}=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=\frac{1}{3}\\5x=-\frac{2}{7}\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{6}\\x=-\frac{2}{35}\end{cases}}\)
a, (1/7 . x - 2/3) . (-1/5 . x + 3/5) = 0
Suy ra : 1/7 .x -2/3 = 0 hoặc -1/5 .x + 3/5 =0
Vậy : 1/7 .x = 2/3 hoặc -1/5 .x = 3/5
x =2/3 : 1/7 hoặc x = 3/5 : (-1/5)
x = 14/3 hoặc x = -3
b, 1/10 .x - 4/5 .x + 1 =0
x . (1/10 - 4/5) + 1 = 0
x . (-7/10) + 1 = 0
x . -7/10 =0 +1 = 1
x = 1 : (-7/10)
x = -10/7
c, (2x - 1/3 ) . (5x +2/7) = 0
Suy ra : 2x - 1/3 = 0 hoặc 5x + 2/7 = 0
Vậy : 2x = 1/3 hoặc 5x = 2/7
x = 1/3 : 2 hoặc x = 2/7 : 5
x = 1/6 hoặc x = 2/35
Bài 4:
a, \(\sqrt{3x+4}-\sqrt{2x+1}=\sqrt{x+3}\) (ĐK: \(x\ge\dfrac{-1}{2}\))
\(\Rightarrow\) \(\left(\sqrt{3x+4}-\sqrt{2x+1}\right)^2\) = x + 3
\(\Leftrightarrow\) \(3x+4+2x+1-2\sqrt{\left(3x+4\right)\left(2x+1\right)}=x+3\)
\(\Leftrightarrow\) \(4x+2=2\sqrt{6x^2+11x+4}\)
\(\Leftrightarrow\) \(2x+1=\sqrt{6x^2+11x+4}\)
\(\Rightarrow\) \(4x^2+4x+1=6x^2+11x+4\)
\(\Leftrightarrow\) \(2x^2+7x+3=0\)
\(\Delta=7^2-4.2.3=25\); \(\sqrt{\Delta}=5\)
Vì \(\Delta\) > 0; theo hệ thức Vi-ét ta có:
\(x_1=\dfrac{-7+5}{4}=\dfrac{-1}{2}\)(TM); \(x_2=\dfrac{-7-5}{4}=-3\) (KTM)
Vậy ...
Các phần còn lại bạn làm tương tự nha, phần d bạn chuyển \(-\sqrt{2x+4}\) sang vế trái rồi bình phương 2 vế như bình thường là được
Bài 5:
a, \(\sqrt{x+4\sqrt{x}+4}=5x+2\)
\(\Leftrightarrow\) \(\sqrt{\left(\sqrt{x}+2\right)^2}=5x+2\)
\(\Rightarrow\) \(\sqrt{x}+2=5x+2\)
\(\Leftrightarrow\) \(5x-\sqrt{x}=0\)
\(\Leftrightarrow\) \(\sqrt{x}\left(5\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}\sqrt{x}=0\\5\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{25}\end{matrix}\right.\)
Vậy ...
Phần b cũng là hằng đẳng thức thôi nha \(\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}=x-1\); \(\sqrt{x^2+4x+4}=\sqrt{\left(x+2\right)^2}=x+2\) rồi giải như bình thường là xong nha!
VD1:
a, \(\sqrt{2x-1}=\sqrt{2}-1\) (x \(\ge\) \(\dfrac{1}{2}\))
\(\Leftrightarrow\) \(2x-1=\left(\sqrt{2}-1\right)^2\) (Bình phương 2 vế)
\(\Leftrightarrow\) \(2x-1=2-2\sqrt{2}+1\)
\(\Leftrightarrow\) \(2x=4-2\sqrt{2}\)
\(\Leftrightarrow\) \(x=2-\sqrt{2}\) (TM)
Vậy ...
Phần b tương tự nha
c, \(\sqrt{3}x^2-\sqrt{12}=0\)
\(\Leftrightarrow\) \(\sqrt{3}x^2=\sqrt{12}\)
\(\Leftrightarrow\) \(x^2=2\)
\(\Leftrightarrow\) \(x=\pm\sqrt{2}\)
Vậy ...
d, \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)
\(\Leftrightarrow\) \(\sqrt{2}\left(x-1\right)=\sqrt{50}\)
\(\Leftrightarrow\) \(x-1=5\)
\(\Leftrightarrow\) \(x=6\)
Vậy ...
VD2:
Phần a dễ r nha (Bình phương 2 vế rồi tìm x như bình thường)
b, \(\sqrt{x^2-x}=\sqrt{3-x}\) (\(x\le3\); \(x^2\ge x\))
\(\Leftrightarrow\) \(x^2-x=3-x\) (Bình phương 2 vế)
\(\Leftrightarrow\) \(x^2=3\)
\(\Leftrightarrow\) \(x=\pm\sqrt{3}\) (TM)
Vậy ...
c, \(\sqrt{2x^2-3}=\sqrt{4x-3}\) (x \(\ge\) \(\dfrac{\sqrt{3}}{2}\))
\(\Leftrightarrow\) \(2x^2-3=4x-3\) (Bình phương 2 vế)
\(\Leftrightarrow\) \(2x^2-4x=0\)
\(\Leftrightarrow\) \(2x\left(x-2\right)=0\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}2x=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\left(KTM\right)\\x=2\left(TM\right)\end{matrix}\right.\)
Vậy ...
Chúc bn học tốt! (Có gì không biết cứ hỏi mình nha!)
\(2x^4-x^3+2x^2+1=2x^4-2x^3+2x^2+x^3-x^2+x+x^2-x+1\\ \)
\(=2x^2\left(x^2-x+1\right)+x\left(x^2-x+1\right)+\left(x^2-x+1\right)=\left(x^2-x+1\right)\left(2x^2+x+1\right)\)
Vậy a = 2; b = 1; c = 1.
B1: để x là số nguyên thì: 5 chia hết cho 2x+1
=> \(2x+1\in U\left(5\right)\)
+> \(2x+1\in\left\{1;-1;5;-5\right\}\)
=> \(x\in\left\{0;-1;2;-3\right\}\)
2x(x−5)−x(3+2x)=262x(x−5)−x(3+2x)=26
⇔⇔ x[2(x−5)−(3+2x)]=26x[2(x−5)−(3+2x)]=26
⇔⇔ x(2x−10−3−2x)=26
⇔⇔ x(−13)=26
x=26:(-13)
x=2