Tìm x biết : / x+3/ + / x+7/ = 3x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x biết:
5. ( x-1 ) - 7.( x-2 ) = 2x -39
Tìm x thuộc Z biết:
x - 3 - 14.( x-2 )= -3x -3
\(3x+7⋮x-2\)
5 ( x - 1 ) - 7 ( x - 2 ) = 2x - 39
<=> 5x - 5 - 7x + 14 = 2x - 39
<=> 5x - 7x - 2x = -39 + 5 - 14
<=> -4x = -48
<=> x = 12
x - 3 - 14.( x-2 )= -3x -3\(\Rightarrow\chi-3-28-14\chi-28=-3\chi-3\)
\(\Rightarrow\chi-3-28+3=-3\chi-3\)
\(\Rightarrow\chi-28=11\chi\)
\(\Rightarrow\chi-11\chi=28\)
\(\Rightarrow10\chi=28\Rightarrow\chi=2,8\left(kot.m\chi\inℤ\right)\)
\(1,\\ \left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\\ \Leftrightarrow\left(x-7\right)^{x+1}\left[1-\left(x-7\right)^{10}\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x-7\right)^{x+1}=0\\\left(x-7\right)^{10}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x-7=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=8\end{matrix}\right.\)
\(2,\\ a,\left|2x-3\right|>5\Leftrightarrow\left[{}\begin{matrix}2x-3< -5\\2x-3>5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< -1\\x>4\end{matrix}\right.\\ b,\left|3x-1\right|\le7\Leftrightarrow\left[{}\begin{matrix}3x-1\le7\\1-3x\le7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\le\dfrac{8}{3}\\x\ge-2\end{matrix}\right.\\ c,\cdot x< -\dfrac{3}{2}\\ \Leftrightarrow5-3x+\left(-2x-3\right)=7\Leftrightarrow2-5x=7\Leftrightarrow x=-1\left(ktm\right)\\ \cdot-\dfrac{3}{2}\le x\le\dfrac{5}{3}\\ \Leftrightarrow\left(5-3x\right)+\left(2x+3\right)=7\Leftrightarrow8-x=7\Leftrightarrow x=1\left(tm\right)\\ \cdot x>\dfrac{5}{3}\\ \Leftrightarrow\left(3x-5\right)+\left(2x+3\right)=7\Leftrightarrow5x-2=7\Leftrightarrow x=\dfrac{9}{5}\left(tm\right)\\ \Leftrightarrow S=\left\{1;\dfrac{9}{5}\right\}\)
1) x (x-2016) + 2015 (2016-x) = 0
x (x-2016) - 2015 (x- 2016) = 0
(x-2015)(x-2016) =0
\(\Rightarrow\orbr{\begin{cases}x-2015=0\\x-2016=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2015\\x=2016\end{cases}}}\)
Vậy x= 2015; 2016
2) -5x (x-15) + (15-x) = 0
-5x (x-15) - (x-15) =0
(-5x -1) (x-15) =0
\(\Rightarrow\orbr{\begin{cases}-5x-1=0\\x-15=0\end{cases}\Rightarrow\orbr{\begin{cases}-5x=1\\x=15\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{1}{5}\\x=15\end{cases}}}\)
Vậy x= -1/5; 15
3) 3x (3x-7) - (7-3x) =0
3x(3x-7) + (3x -7) =0
(3x+1) (3x-7) =0
\(\Rightarrow\orbr{\begin{cases}3x+1=0\\3x-7=0\end{cases}\Rightarrow\orbr{\begin{cases}3x=-1\\3x=7\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{1}{3}\\x=\frac{7}{3}\end{cases}}}\)
Vậy x= -1/3 ; 7/3
3x + 7 = 3 - x
<=> 3x + x = 3 - 7
<=> 4x = -4
<=> x = -4/4
<=> x= -1
Vâỵ S{ -1}
a) |3x - 5| = 3x - 5 => 3x - 5 > 0 => 3x > 5 => x > 5/3
b) |7 - x| = x - 7 => 7 - x < 0 => - x < - 7 => x > 7
c) |2x - 3| = 3 - 2x => 2x - 3 < 0 => 2x < 3 => x < 3/2
a) \(\left(x+2\right)\left(x+3\right)-\left(x+1\right)\left(x+7\right)=6\)
\(\Leftrightarrow x^2+5x+6-x^2-8x-7=6\)
\(\Leftrightarrow-3x=7\)
\(\Leftrightarrow x=-\frac{7}{3}\)
b) \(\left(8x-3\right)\left(3x+2\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x-1\right)-33\)
\(\Leftrightarrow\left(8x-3\right)\left(9x^2+12x+4\right)-4x^2-23x-28=10x^2+3x-1-33\)
\(\Leftrightarrow72x^3+69x^2-4x-12-14x^2-26x+6=0\)
\(\Leftrightarrow72x^3+55x^2-30x-6=0\)
Nghiệm vô tỉ: \(x_1=-1,078...\) ; \(x_2=0,476...\) ; \(x_3=-0,162...\)
a) (x + 2)(x + 3) - (x + 1)(x + 7) = 6
=> x(x + 3) + 2(x + 3) - x(x + 7) - 1(x + 7) = 6
=> x2 + 3x + 2x + 6 - x2 - 7x - x - 7 = 6
=> x2 + 5x + 6 - x2 - 7x - x - 7 = 6
=> (x2 - x2) + (5x - 7x - x) + (6 - 7) = 6
=> -3x - 1 = 6
=> -3x = 7
=> x = -7/3
b) (8x - 3)(3x + 2)(3x + 2) - (4x + 7)(x + 4) = (2x + 1)(5x - 1) - 33
=> (8x - 3)(9x2 + 12x + 4) - [4x(x + 4) + 7(x + 4)] = 2x(5x - 1) + 1(5x - 1) - 33
=> 8x(9x2 + 12x + 4) - 3(9x2 + 12x + 4) - (4x2 + 16x + 7x + 28) = 10x2 - 2x + 5x - 1 - 33
=> 72x3 + 96x2 + 32x - 27x2 - 36x - 12 - 4x2 - 16x - 7x - 28 - 10x2 + 2x - 5x + 1 + 33 = 0
=> 72x3 + (96x2 - 27x2 - 10x2 - 4x2) + (32x - 36x - 16x - 7x + 2x - 5x) + (-12 - 28 + 1 + 33) = 0
=> 72x3 + 55x2 - 30x - 6 = 0
=> x vô nghiệm
\(\frac{2}{7}\)x - \(\frac{1}{3}\)=\(\frac{3}{5}\)x-1
ta có :
\(\left|x+3\right|+\left|x+7\right|=3x\ge0\Rightarrow x\ge0\)
\(PT\Leftrightarrow x+3+x+7=3x\Leftrightarrow x=10\)