K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2019

kẻ đường cao AH

Ta có: BH=HC=\(\frac{BC}{2}=\frac{c}{2}\)\(\frac{ }{ }\)

theo hệ thức lượng trong tam giác vuông ta có: \(AH^2=BH.HC=>AH=\sqrt{\frac{c}{2}.\frac{c}{2}}=\frac{c^2}{4}\)

diện tích tam giác ABC = \(\frac{1}{2}.AH.BC=\frac{1}{2}.\frac{c^2}{4}.c=\frac{c}{8}\)

vậy diện tích tam giác ABC = \(\frac{c}{8}\)


C

a: Xét ΔABD vuông tại D vàΔACE vuông tại E có

góc A chung

Do đó: ΔABD đồng dạng với ΔACE

b: Xét tứ giác BEDC có góc BEC=góc BDC=90 độ

nên BEDC là tứ giác nội tiếp

=>góc BED+góc BCD=180 độ