ko dùng máy tính , hãy tính giá trị biểu thức sau : 2.cos37.cos53+sin2 28 -3.tan54/cot36 +sin2 62 giúp em câu này với ;-;
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lần sau bạn vào cái hình E để gửi câu hỏi nha!
\(P=\dfrac{sin^2\alpha-sin\alpha\cdot cos\alpha+2cos^2\alpha}{2sin^2\alpha-cos^2\alpha}\)
\(P=\dfrac{tan^2\alpha-tan\alpha+2}{2tan^2\alpha-1}\) (Chia cả tử và mẫu cho \(cos^2\alpha\))
\(P=\dfrac{3^2-3+2}{2\cdot3^2-1}=\dfrac{8}{17}\)
Chúc bn học tốt!
Chọn C.
Từ giả thiết ta suy ra:
B = tan2x (sin2x - 1) + sin2 x = -tan2x.cos2x + sin2x
Bạn biến đổi cuối cùng bằng :A=(sin2\(\alpha\)+\(\cos^2\alpha\))2=12=1
\(a,A=\left(\cos^220^0+\cos^270^0\right)+\left(\cos^240^0+\cos^250^0\right)\\ A=\left(\cos^220^0+\sin^220^0\right)+\left(\cos^240^0+\sin^240^0\right)=1+1=2\\ b,B=\left(\cos^2\alpha\right)^3+\left(\sin^2\alpha\right)^3+3\sin^2\alpha\cdot\cos^2\alpha\cdot\left(\sin^2\alpha+\cos^2\alpha\right)\\ B=\left(\sin^2\alpha+\cos^2\alpha\right)^3=1^3=1\)
\(A=\dfrac{\sqrt{60}}{\sqrt{15}}\\=\sqrt{\dfrac{60}{15}}\\=\sqrt{4}=2\)
\(B=\sqrt{\dfrac{72}{15}}:\sqrt{\dfrac{2}{15}}\\=\sqrt{\dfrac{72}{15}}\cdot\sqrt{\dfrac{15}{2}}\\=\sqrt{\dfrac{72}{2}}=6\)
\(C=\left(\sqrt{3}+\sqrt{2}\right)\cdot\left(\sqrt{2}-\sqrt{3}\right)\\=\left(\sqrt{2}\right)^2-\left(\sqrt{3}\right)^2\\=2-3=-1\)
\(P.sina=\dfrac{sina}{sin2a.sina}+\dfrac{sina}{sin3a.sin2a}+...+\dfrac{sina}{sin\left(n+1\right)a.sinna}\)
\(=\dfrac{sin\left(2a-a\right)}{sin2a.sina}+\dfrac{sin\left(3a-2a\right)}{sin3a.sin2a}+...+\dfrac{sin\left[\left(n+1\right)a-na\right]}{sin\left(n+1\right)a.sinna}\)
\(=\dfrac{sin2a.cosa-cos2a.sina}{sin2a.sina}+\dfrac{sin3a.cos2a-cos3a.sin2a}{sin3a.sin2a}+\dfrac{sin\left(n+1\right)a.cosna-cos\left(n+1\right)a.sinna}{sin\left(n+1\right)a.sinna}\)
\(=cota-cot2a+cot2a-cot3a+...+cot\left(na\right)-cot\left(n+1\right)a\)
\(=cota-cot\left(n+1\right)a\)
\(\Rightarrow P=\dfrac{cota-cot\left(n+1\right)a}{sina}\)
\(=2\cdot sin53^0\cdot cos53^0+1-3=sin106^0-2\)