Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,A=\left(\cos^220^0+\cos^270^0\right)+\left(\cos^240^0+\cos^250^0\right)\\ A=\left(\cos^220^0+\sin^220^0\right)+\left(\cos^240^0+\sin^240^0\right)=1+1=2\\ b,B=\left(\cos^2\alpha\right)^3+\left(\sin^2\alpha\right)^3+3\sin^2\alpha\cdot\cos^2\alpha\cdot\left(\sin^2\alpha+\cos^2\alpha\right)\\ B=\left(\sin^2\alpha+\cos^2\alpha\right)^3=1^3=1\)
\(A=\dfrac{\sqrt{60}}{\sqrt{15}}\\=\sqrt{\dfrac{60}{15}}\\=\sqrt{4}=2\)
\(B=\sqrt{\dfrac{72}{15}}:\sqrt{\dfrac{2}{15}}\\=\sqrt{\dfrac{72}{15}}\cdot\sqrt{\dfrac{15}{2}}\\=\sqrt{\dfrac{72}{2}}=6\)
\(C=\left(\sqrt{3}+\sqrt{2}\right)\cdot\left(\sqrt{2}-\sqrt{3}\right)\\=\left(\sqrt{2}\right)^2-\left(\sqrt{3}\right)^2\\=2-3=-1\)
\(=2\cdot sin53^0\cdot cos53^0+1-3=sin106^0-2\)