Tính (x^4 + 20x^3 + 125x^2 + 250x + 2108) / (x^2 + 10x + 29)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x^2+10\right)=0\)
\(\Leftrightarrow x\left(x-2\right)=0\) (do \(x^2+10>0;\forall x\))
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
\(a.\frac{4x-3}{x-5}=\frac{29}{3}\\ \Leftrightarrow\frac{3\left(4x-3\right)}{3\left(x-5\right)}=\frac{29\left(x-5\right)}{3\left(x-5\right)}\\ \Leftrightarrow3\left(4x-3\right)=29\left(x-5\right)\\ \Leftrightarrow3\left(4x-3\right)-29\left(x-5\right)=0\\ \Leftrightarrow12x-9-29x+145=0\\ \Leftrightarrow-17x+136=0\\ \Leftrightarrow-17x=-136\\ \Leftrightarrow x=\frac{-136}{-17}=8\)
\(b.\frac{2x-1}{5-3x}=2\\ \Leftrightarrow\frac{2x-1}{5-3x}=\frac{4}{2}\\ \Leftrightarrow\frac{2\left(2x-1\right)}{2\left(5-3x\right)}=\frac{4\left(5-3x\right)}{2\left(5-3x\right)}\\ \Leftrightarrow2\left(2x-1\right)=4\left(5-3x\right)\\ \Leftrightarrow2\left(2x-1\right)-4\left(5-3x\right)=0\\ \Leftrightarrow4x-2-20+12x=0\\ \Leftrightarrow16x-22=0\\ \Leftrightarrow16x=22\\ \Leftrightarrow x=\frac{22}{16}=\frac{11}{8}\)
\(c.\frac{4x-5}{x-1}=\frac{2+x}{x-1}\\ \Leftrightarrow4x-5=2+x\\ \Leftrightarrow4x-5-2-x=0\\ \Leftrightarrow3x-7=0\\ \Leftrightarrow3x=7\\ \Leftrightarrow x=\frac{7}{3}\)
\(d.\frac{7}{x+2}=\frac{3}{x-5}\\ \Leftrightarrow\frac{7\left(x-5\right)}{\left(x+2\right)\left(x-5\right)}=\frac{3\left(x+2\right)}{\left(x+2\right)\left(x-5\right)}\\ \Leftrightarrow7\left(x-5\right)=3\left(x+2\right)\\ \Leftrightarrow7\left(x-5\right)-3\left(x+2\right)=0\\ \Leftrightarrow7x-35-3x-6=0\\ \Leftrightarrow4x-41=0\\ \Leftrightarrow4x=41\\ \Leftrightarrow x=\frac{41}{4}\)
\(e.\frac{2x+5}{2x}-\frac{x}{x+5}=0\\ \Leftrightarrow\frac{\left(2x+5\right)\left(x+5\right)}{2x\left(x+5\right)}-\frac{x.2x}{2x\left(x+5\right)}=0\\ \Leftrightarrow\left(2x+5\right)\left(x+5\right)-2x^2=0\\ \Leftrightarrow2x^2+10x+5x+25-2x^2=0\\ \Leftrightarrow15x+25=0\\ \Leftrightarrow15x=-25\\ \Leftrightarrow x=\frac{-25}{15}=\frac{-5}{3}\)
\(f.\frac{12x+1}{11x-4}+\frac{10x-4}{9}=\frac{20x+17}{18}\\\Leftrightarrow\frac{18\left(12x+1\right)}{18\left(11x-4\right)}+\frac{\left(10x-4\right).2\left(11x-4\right)}{9.2\left(11x-4\right)}=\frac{\left(20x+17\right)\left(11x-4\right)}{18\left(11x-4\right)}\\ \Leftrightarrow18\left(12x+1\right)+\left(10x-4\right).2\left(11x-4\right)=\left(20x+17\right)\left(11x-4\right)\\ \Leftrightarrow220x^2+48x+50=220x^2+107x-68\\ \Leftrightarrow48x+50=107x-68\\ \Leftrightarrow48x-107x=-68-50\\ \Leftrightarrow59x=-118\\ \Leftrightarrow x=-2\)
a: \(=3\sqrt{5}+2\sqrt{5}-2\sqrt{5}=3\sqrt{5}\)
b: \(=2\sqrt{2}+2\sqrt{2}+5\sqrt{2}=9\sqrt{2}\)
c: \(=4\sqrt{3}+3\sqrt{3}-3\sqrt{5}+2\sqrt{5}=7\sqrt{3}-\sqrt{5}\)
d: \(=5\sqrt{3}+4\sqrt{3}-10\sqrt{3}=-\sqrt{3}\)
e: \(=\left(\sqrt{7}-2\sqrt{3}\right)\cdot\sqrt{7}+2\sqrt{21}\)
=7-2*căn 21+2*căn 21
=7
f: \(=\left(2\sqrt{11}-3\sqrt{2}\right)\cdot\sqrt{11}+3\sqrt{22}\)
=22-3*căn 22+3*căn 22
=22
a) \(3\sqrt{5}+\sqrt{20}-2\sqrt{5}\)
\(=3\sqrt{5}+2\sqrt{5}-2\sqrt{5}\)
\(=3\sqrt{5}\)
b) \(2\sqrt{2}+\sqrt{8}+\sqrt{50}\)
\(=2\sqrt{2}+2\sqrt{2}+5\sqrt{2}\)
\(=9\sqrt{5}\)
c) \(4\sqrt{3}+\sqrt{27}-\sqrt{45}+2\sqrt{5}\)
\(=4\sqrt{3}+3\sqrt{3}-3\sqrt{5}+2\sqrt{5}\)
\(=7\sqrt{3}-\sqrt{5}\)
d) \(\sqrt{75}+\sqrt{48}-\sqrt{300}\)
\(=5\sqrt{3}+4\sqrt{3}-10\sqrt{3}\)
\(=-\sqrt{3}\)
e) \(\left(\sqrt{28}-\sqrt{12}-\sqrt{7}\right)\sqrt{7}+2\sqrt{21}\)
\(=\left(2\sqrt{7}-2\sqrt{3}-\sqrt{7}\right)\sqrt{7}+2\sqrt{21}\)
\(=\left(\sqrt{7}-2\sqrt{3}\right)\sqrt{7}+2\sqrt{21}\)
\(=7-2\sqrt{21}+2\sqrt{21}\)
\(=7\)
f) \(\left(\sqrt{99}-\sqrt{18}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\)
\(=\left(3\sqrt{11}-3\sqrt{2}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\)
\(=\left(2\sqrt{11}-3\sqrt{2}\right)\sqrt{11}+3\sqrt{22}\)
\(=22-3\sqrt{22}+3\sqrt{22}\)
\(=22\)
g) \(3\sqrt{45}-5\sqrt{125x}+7\sqrt{20x}+28\)
\(=9\sqrt{5}-25\sqrt{5x}+14\sqrt{5x}+28\)
\(=9\sqrt{5}-11\sqrt{5x}+28\)
\(x^2-5x-4\left(x-5\right)=0\)
\(\Leftrightarrow\)\(x\left(x-5\right)-4\left(x-5\right)=0\)
\(\Leftrightarrow\)\(\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-5=0\\x-4=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=5\\x=4\end{cases}}\)
Vậy....
\(2x\left(x+6\right)=7x+42\)
\(\Leftrightarrow\)\(2x\left(x+6\right)-7x-42=0\)
\(\Leftrightarrow\)\(2x\left(x+6\right)-7\left(x+6\right)=0\)
\(\Leftrightarrow\)\(\left(x+6\right)\left(2x-7\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+6=0\\2x-7=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-6\\x=\frac{7}{2}\end{cases}}\)
Vậy......
\(x^3-5x^2+x-5=0\)
\(\Leftrightarrow\)\(x^2\left(x-5\right)+\left(x-5\right)=0\)
\(\Leftrightarrow\)\(\left(x-5\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\)\(x-5=0\)
\(\Leftrightarrow\)\(x=5\)
\(x^4-2x^3+10x^2-20x=0\)
\(\Leftrightarrow\)\(x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\Leftrightarrow\)\(x\left(x-2\right)\left(x^2+10\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Vậy...
a: \(\Leftrightarrow\left(x+12-3x\right)\left(x+12+3x\right)=0\)
=>(-2x+12)(4x+12)=0
=>x=-3 hoặc x=6
b: \(\Leftrightarrow20x^3-15x^2+45x-45=0\)
=>\(x\simeq0.93\)
d: =>-4x+28+11x=-x+3x+15
=>7x+28=2x+15
=>5x=-13
=>x=-13/5
e: \(\Leftrightarrow4x^3-12x+x=4x^3-3x+5\)
=>-9x=-3x+5
=>-6x=5
=>x=-5/6
bạn dùng hệ số bất định
(x2+ax+b)(x2+cx+d)=x4+cx3+dx2+ax3+acx2+adx+bx2+bcx+bd
=x4+x3(a+c)+x2(b+ac+d)+x(ad+bc)+bd
=>a+c=-1
=>b+ac+d=-10 =>a=2;b=-2;c=-3;d=-2
=>ad+bc=20
=>bd=4
vây x4-x3-10x2+20x+4=(x2+2x-2)(x2-3x-2)=0
=> x2+2x-2=0
=> x2-3x-2=0 bạn tự giải nhé
\(\left(x^2+\text{ax}+b\right)\left(x^2+cx+d\right)=x^4+cx^3+dx^2+\text{ax}^3+acx^2+adx+bx^2+bcx+bd\\ =>a+c=1\\ =>b+ac+d=-10\)
\(=>ad+bc=20\\ =>a=2;b=-2;c=-3;d=-2\\ =>bd=4\\ \)
Vậy \(x^4-x^3-10x^2+20x+4=\left(x^2+2x-2\right)\left(x^2-3x-2\right)=0\\ =>x^2+2x-2=0\\ =>x^2-3x-2=0\)
\(=>x^2-x-2x-2=0\\ =>x\left(x-1\right)-2\left(x-1\right)=0\\ =>\left(x-1\right)\left(x-2\right)=0\)
tới đây chắc dễ dàng
1) \(=\left(2z+3\right)\left(4z^2-6z+9\right)\)
2) \(=\left(\frac{3x^2}{5}-\frac{1}{2}\right)\left(\frac{3x^2}{5}+\frac{1}{2}\right)\)
3) \(=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)\left(x^{16}+1\right)\)
4) \(=\left(2x+1\right)^2\)
5) \(=\left(x-10\right)^2\)
6) \(=\left(y^2-7\right)^2\)
7) \(=\left(5x-4y\right)\left(25x^2+20xy+16y^2\right)\)
a, \(\left(x+2\right)^3-x\left(x^2+6x-3\right)=0\Leftrightarrow x^3+4x^2+4x+2x^2+8x+8-x^3-6x^2+3x=0\)
\(\Leftrightarrow15x+8=0\Leftrightarrow x=-\frac{8}{15}\)
b, \(\left(x+4\right)^3-x\left(x+6\right)^2=7\Leftrightarrow12x+64=0\Leftrightarrow x=-\frac{19}{4}\)làm tắt:P
Tự làm nốt nhé
\(x^4-2x^3+10x^2-20x=0\)
\(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3+10x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x^3+10x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x\left(x^2+10\right)=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=0\end{cases}}}\)
\(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x^2+10\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x=0\end{cases}}\)(vì \(x^2+10\ge0\) với mọi x)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}\)
\(=\dfrac{x^4+10x^3+29x^2+10x^3+100x^2+290x-4x^2-40x-116+2224}{x^2+10x+29}\)
\(=x^2+10x-4+\dfrac{2224}{x^2+10x+29}\)