Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ... \(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x+2\right)=0\Leftrightarrow\hept{\begin{cases}x=1\\x=2\\x=-2\end{cases}}\)Vậy.....
b) ... \(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3+10x\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x^2+10\right)=0\Leftrightarrow\hept{\begin{cases}x=0\\x=2\\x^2=-10\Rightarrow x\in\theta\end{cases}}\)(\(\theta\)là rỗng) Vậy.........
c) ... \(\Leftrightarrow2x-3=x+5\Leftrightarrow x=8\)Vậy.......
d) ... \(\Leftrightarrow x\left(x^2-16\right)=0\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\Leftrightarrow\hept{\begin{cases}x=0\\x=4\\x=-4\end{cases}}\)Vậy......
tathay x la 1 so ma x la mot so vay x la 0 vi 0 co so mu nao cung bang 0
Bài 3:
a) Ta có: \(x^3-16x=0\)
\(\Leftrightarrow x\left(x^2-16\right)=0\)
\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
Vậy: \(x\in\left\{0;4;-4\right\}\)
b) Ta có: \(x^4-2x^3+10x^2-20x=0\)
\(\Leftrightarrow x\left(x^3-2x^2+10x-20\right)=0\)
\(\Leftrightarrow x\left[x^2\left(x-2\right)+10\left(x-2\right)\right]=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x^2+10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy: \(x\in\left\{0;2\right\}\)
c) Ta có: \(\left(2x-3\right)^2=\left(x+5\right)^2\)
\(\Leftrightarrow\left(2x-3\right)^2-\left(x+5\right)^2=0\)
\(\Leftrightarrow\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)
\(\Leftrightarrow\left(x-8\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\3x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-\frac{2}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{8;-\frac{2}{3}\right\}\)
d) Ta có: \(x^2\left(x-1\right)-4x^2+8x-4=0\)
\(\Leftrightarrow x^2\left(x-1\right)-4\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2-4\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy: \(x\in\left\{1;2\right\}\)
\(\left(x+1\right)^2=x+1\)
\(\left(x+1\right)^2-\left(x+1\right)=0\)
\(\left(x+1\right)\left(x+1-1\right)=0\)
\(\left(x+1\right)x=0\)
\(\orbr{\begin{cases}x+1=0\\x=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}\)vậy.....
\(x\left(x-5\right)^2-4x+20=0\)
\(x\left(x-5\right)^2-4\left(x-5\right)=0\)
\(\left(x-5\right)\left[x\left(x-5\right)-4\right]=0\)
\(\left(x-5\right)\left(x^2-5x-4\right)=0\)
\(\orbr{\begin{cases}x-5=0\\x^2-5x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=-0,7015621187\end{cases}}}\)vậy.........
\(x\left(x+6\right)-7x-42=0\)
\(x\left(x+6\right)-7\left(x+6\right)=0\)
\(\left(x+6\right)\left(x-7\right)=0\)
\(\orbr{\begin{cases}x+6=0\\x-7=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-6\\x=7\end{cases}}}\) vậy....
\(x^3-5x^2+x-5=0\)
\(x^2\left(x-5\right)+\left(x-5\right)=0\)
\(\left(x-5\right)\left(x^2+1\right)=0\)
\(\orbr{\begin{cases}x-5=0\\x^2+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x^2=-1\Rightarrow x\in\Phi\end{cases}}}\)vậy........
\(x^4-2x^3+10x^2-20x=0\)
\(x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\left(x-2\right)\left(x^3+10x\right)=0\)
\(\orbr{\begin{cases}x-2=0\\x^3+10x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}}\)vậy..............
nhớ chọn mk nha
\(x^2-5x-4\left(x-5\right)=0\)
\(\Leftrightarrow\)\(x\left(x-5\right)-4\left(x-5\right)=0\)
\(\Leftrightarrow\)\(\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-5=0\\x-4=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=5\\x=4\end{cases}}\)
Vậy....
\(2x\left(x+6\right)=7x+42\)
\(\Leftrightarrow\)\(2x\left(x+6\right)-7x-42=0\)
\(\Leftrightarrow\)\(2x\left(x+6\right)-7\left(x+6\right)=0\)
\(\Leftrightarrow\)\(\left(x+6\right)\left(2x-7\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+6=0\\2x-7=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-6\\x=\frac{7}{2}\end{cases}}\)
Vậy......
\(x^3-5x^2+x-5=0\)
\(\Leftrightarrow\)\(x^2\left(x-5\right)+\left(x-5\right)=0\)
\(\Leftrightarrow\)\(\left(x-5\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\)\(x-5=0\)
\(\Leftrightarrow\)\(x=5\)
\(x^4-2x^3+10x^2-20x=0\)
\(\Leftrightarrow\)\(x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\Leftrightarrow\)\(x\left(x-2\right)\left(x^2+10\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Vậy...
\(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x^2+10\right)=0\)
\(\Leftrightarrow x\left(x-2\right)=0\) (do \(x^2+10>0;\forall x\))
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Bài 1:Tìm x,y biết:
a)\(x^2-6x+y^2+10y+34\)
=>\(\left(x^2-2.x.3+3^2\right)+\left(y^2+2.y.5+5^2\right)=0\)
=>\(\left(x-3\right)^2+\left(y+5\right)^2=0\)
=>\(\left\{{}\begin{matrix}x-3=0\\y+5=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=3\\y=-5\end{matrix}\right.\)
a/ (x-5)^2-49=0
<=>(x-5)2-72
<=>(x-5-7)(x-5+7)=0
<=>(x-12)(x+2)=0
<=>x-12=0 hoặc x+2=0
<=>x=12 hoặc x=-2
vậy x=12 hoặc x=-2
b/ (x+11)^2=121
<=>(x+11)2-121=0
<=>(x+11)2-112=0
<=>(x+11-11)(x+11+11)=0
<=>x(x+22)=0
<=>x=0 hoặc x+22=0
<=>x=0 hoặc x=-22
vậy x=0 hoặc x=-22
c/ x.(x+7)-6x-42=0
<=>x2+7x-6x-42=0
<=>x2+x-42=0
<=>x2-6x+7x-42=0
<=>x(x-6)+7(x-6)=0
<=>(x-6)(x-7)=0
<=>x-6=0 hoặc x-7=0
<=>x=6 hoặc x=7
vậy x=6;7
d/ x^4-2x^3+10x^2-20x=0
<=>x3(x-2)+10x(x-2)=0
<=>(x-2)(x3+10x)=0
<=>(x-2)x(x2+10)=0
<=>x-2=0 hoặc x=0 hoặc x2+10=0
<=>x=2 hoặc x=0 hoặc x2=-10(vô lí)
vậy x=2;0
a)(x-5)2-49=0
<=>(x-5-7)(x-5+7)=0
<=>(x-12)(x+2)=0
<=>x-12=0 hoặc x+2=0
<=>x=12 hoặc x=-2
b)(x+11)2=121
<=>(x+11)2-121=0
<=>(x+11-11)(x+11+11)=0
<=>x(x+22)=0
<=>x=0 hoặc x+22=0
<=>x=0 hoặc x=-22
c)x(x+7)-6x-42=0
<=>x(x+7)-(6x+42)=0
<=>x(x+7)-6(x+7)=0
<=>(x+7)(x-6)=0
<=>x+7=0 hoặc x-6=0
<=>x=-7 hoặc x=6
d)x4-2x3+10x2-20x=0
<=>x(x3-2x2+10x-20)=0
<=>x[(x3-2x2)+(10x-20)]=0
<=>x[x2(x-2)+10(x-2)]=0
<=>x(x-2)(x2+10)=0
Do x2>0=>x2+10>0
=>x(x-2)=0
<=>x=0 hoặc x-2=0
<=>x=0 hoặc x=2
\(x^4-2x^3+10x^2-20x=0\)
\(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3+10x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x^3+10x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x\left(x^2+10\right)=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=0\end{cases}}}\)
\(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x^2+10\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x=0\end{cases}}\)(vì \(x^2+10\ge0\) với mọi x)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}\)