Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4-2x^3+10x^2-20x=0\)
\(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3+10x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x^3+10x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x\left(x^2+10\right)=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=0\end{cases}}}\)
\(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x^2+10\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x=0\end{cases}}\)(vì \(x^2+10\ge0\) với mọi x)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}\)
a) ... \(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x+2\right)=0\Leftrightarrow\hept{\begin{cases}x=1\\x=2\\x=-2\end{cases}}\)Vậy.....
b) ... \(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3+10x\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x^2+10\right)=0\Leftrightarrow\hept{\begin{cases}x=0\\x=2\\x^2=-10\Rightarrow x\in\theta\end{cases}}\)(\(\theta\)là rỗng) Vậy.........
c) ... \(\Leftrightarrow2x-3=x+5\Leftrightarrow x=8\)Vậy.......
d) ... \(\Leftrightarrow x\left(x^2-16\right)=0\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\Leftrightarrow\hept{\begin{cases}x=0\\x=4\\x=-4\end{cases}}\)Vậy......
Bài 3:
a) Ta có: \(x^3-16x=0\)
\(\Leftrightarrow x\left(x^2-16\right)=0\)
\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
Vậy: \(x\in\left\{0;4;-4\right\}\)
b) Ta có: \(x^4-2x^3+10x^2-20x=0\)
\(\Leftrightarrow x\left(x^3-2x^2+10x-20\right)=0\)
\(\Leftrightarrow x\left[x^2\left(x-2\right)+10\left(x-2\right)\right]=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x^2+10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy: \(x\in\left\{0;2\right\}\)
c) Ta có: \(\left(2x-3\right)^2=\left(x+5\right)^2\)
\(\Leftrightarrow\left(2x-3\right)^2-\left(x+5\right)^2=0\)
\(\Leftrightarrow\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)
\(\Leftrightarrow\left(x-8\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\3x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-\frac{2}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{8;-\frac{2}{3}\right\}\)
d) Ta có: \(x^2\left(x-1\right)-4x^2+8x-4=0\)
\(\Leftrightarrow x^2\left(x-1\right)-4\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2-4\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy: \(x\in\left\{1;2\right\}\)
\(a,\frac{7}{x+2}=\frac{3}{x-5}\)
\(\Rightarrow7\left(x-5\right)=3\left(x+2\right)\)
\(\Rightarrow7x-35=3x+6\)
\(\Rightarrow7x-3x=6+35\)
\(\Rightarrow4x=41\)
\(\Rightarrow x=\frac{41}{4}\)
\(b,\frac{2x+5}{2x}-\frac{x}{x+5}=0\)
\(\Rightarrow\frac{2x+5}{2x}=\frac{x}{x+5}\)
\(\Rightarrow\left(2x+5\right)\left(x+5\right)=2x\cdot x\)
\(\Rightarrow2x^2+10x+5x+25=2x^2\)
\(\Rightarrow2x^2+15x+25-2x^2=0\)
\(\Rightarrow15x+25=0\)
\(\Rightarrow15x=-25\)
\(\Rightarrow x=\frac{-5}{3}\)
\(c,\frac{12x+1}{11x-4}+\frac{10x-4}{9}=\frac{20x+17}{18}\)
\(\Rightarrow\frac{12x+1}{11x-4}=\frac{20x+17}{18}-\frac{10x-4}{9}\)
\(\Rightarrow\frac{12x+1}{11x-4}=\frac{25}{18}\)
\(\Rightarrow\left(12x+1\right)\cdot18=25\cdot\left(11x-4\right)\)
\(\Rightarrow216x+18=275x-100\)
\(\Rightarrow216x-275x=-100-18\)
\(\Rightarrow-59x=-118\)
\(\Rightarrow x=2\)
\(x^2-5x-4\left(x-5\right)=0\)
\(\Leftrightarrow\)\(x\left(x-5\right)-4\left(x-5\right)=0\)
\(\Leftrightarrow\)\(\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-5=0\\x-4=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=5\\x=4\end{cases}}\)
Vậy....
\(2x\left(x+6\right)=7x+42\)
\(\Leftrightarrow\)\(2x\left(x+6\right)-7x-42=0\)
\(\Leftrightarrow\)\(2x\left(x+6\right)-7\left(x+6\right)=0\)
\(\Leftrightarrow\)\(\left(x+6\right)\left(2x-7\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+6=0\\2x-7=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-6\\x=\frac{7}{2}\end{cases}}\)
Vậy......
\(x^3-5x^2+x-5=0\)
\(\Leftrightarrow\)\(x^2\left(x-5\right)+\left(x-5\right)=0\)
\(\Leftrightarrow\)\(\left(x-5\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\)\(x-5=0\)
\(\Leftrightarrow\)\(x=5\)
\(x^4-2x^3+10x^2-20x=0\)
\(\Leftrightarrow\)\(x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\Leftrightarrow\)\(x\left(x-2\right)\left(x^2+10\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Vậy...
Bài 1:Tìm x,y biết:
a)\(x^2-6x+y^2+10y+34\)
=>\(\left(x^2-2.x.3+3^2\right)+\left(y^2+2.y.5+5^2\right)=0\)
=>\(\left(x-3\right)^2+\left(y+5\right)^2=0\)
=>\(\left\{{}\begin{matrix}x-3=0\\y+5=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=3\\y=-5\end{matrix}\right.\)
\(x^4-10x^3-15x^2+20x+4=0\)
\(\Leftrightarrow x^4-x^3-9x^3+9x^2-24x^2+24x-4x+4=0\)
\(\Leftrightarrow x^3\left(x-1\right)-9x^2\left(x-1\right)-24x\left(x-1\right)-4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-9x^2-24x-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+2x^2-11x^2-22x-2x-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+2\right)-11x\left(x+2\right)-2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-11x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\x^2-11x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)(x2 - 11x - 2 không có nghiệm hữu tỉ)
Vậy x = 1 hoặc x = -2.
Bạn ơi hướng dẫn mình cách tách hạng tử được ko?
Cách nào dễ hỉu dễ tách á. bạn có bí kíp k?
ta có : \(x^4-10x^3-15x^2+20x+4=0\) (*)
\(\Leftrightarrow x^4-x^3-9x^3+9x^2-24x^2+24x-4x+4=0\)
\(\Leftrightarrow x^3\left(x-1\right)-9x^2\left(x-1\right)-24x\left(x-1\right)-4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^3-9x^2-24x-4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^3-11x^2-2x+2x^2-22x-4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[x\left(x^2-11x-2\right)+2\left(x^2-11x-2\right)\right]\left(x-1\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-11x-2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-1=0\\x^2-11x-2=0\left(xétsau\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)
ta có : \(x^2-11x-2=0\) (1)
\(\Delta=11^2-4.1.\left(-2\right)=121+8=129>0\)
\(\Rightarrow\) phương trình (1) có 2 nghiệm phân biệt
\(x_1=\dfrac{11+\sqrt{129}}{2}\) ; \(x_2=\dfrac{11-\sqrt{129}}{2}\)
vậy phương trình (*) có 4 nghiệm phân biệt \(x=1;x=-2;x=\dfrac{11+\sqrt{129}}{2};x=\dfrac{11-\sqrt{129}}{2}\)
tathay x la 1 so ma x la mot so vay x la 0 vi 0 co so mu nao cung bang 0
nhung x=2 thi van bang khong duoc