Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x3 - 16x = 0
x(x2 - 16) = 0
=> x = 0 hoặc x2 - 16 = 0
x = 4
Vậy x = 0 hoặc x = 4
b) x4 -2x3 + 10x2 - 20x = 0
x3 (x - 2) + 10x(x - 2) = 0
(x - 2)(x3 + 10x) = 0
=> x - 2 = 0 hoặc x3 + 10x = 0
x = 2 x(x2 + 10) = 0
+ TH1: x = 0
+ TH2: x2 + 10 = 0
x2 = -10 (vô lí)
Vậy x = 2 hoặc x = 0
c) (2x - 3)2 = (x + 5)2
(2x)2 + 2 . 2x . 3 + 32 = x2 + 2.x.5 + 52
4x2 + 12x + 9 = x2 + 10x + 25
4x2 + 12x - x2 - 10x = 25 - 9
3x2 + 2x = 16
x(3x + 2) = 16
Đến đây bạn làm nốt câu c nhé!
\(a.\frac{4x-3}{x-5}=\frac{29}{3}\\ \Leftrightarrow\frac{3\left(4x-3\right)}{3\left(x-5\right)}=\frac{29\left(x-5\right)}{3\left(x-5\right)}\\ \Leftrightarrow3\left(4x-3\right)=29\left(x-5\right)\\ \Leftrightarrow3\left(4x-3\right)-29\left(x-5\right)=0\\ \Leftrightarrow12x-9-29x+145=0\\ \Leftrightarrow-17x+136=0\\ \Leftrightarrow-17x=-136\\ \Leftrightarrow x=\frac{-136}{-17}=8\)
\(b.\frac{2x-1}{5-3x}=2\\ \Leftrightarrow\frac{2x-1}{5-3x}=\frac{4}{2}\\ \Leftrightarrow\frac{2\left(2x-1\right)}{2\left(5-3x\right)}=\frac{4\left(5-3x\right)}{2\left(5-3x\right)}\\ \Leftrightarrow2\left(2x-1\right)=4\left(5-3x\right)\\ \Leftrightarrow2\left(2x-1\right)-4\left(5-3x\right)=0\\ \Leftrightarrow4x-2-20+12x=0\\ \Leftrightarrow16x-22=0\\ \Leftrightarrow16x=22\\ \Leftrightarrow x=\frac{22}{16}=\frac{11}{8}\)
\(c.\frac{4x-5}{x-1}=\frac{2+x}{x-1}\\ \Leftrightarrow4x-5=2+x\\ \Leftrightarrow4x-5-2-x=0\\ \Leftrightarrow3x-7=0\\ \Leftrightarrow3x=7\\ \Leftrightarrow x=\frac{7}{3}\)
\(d.\frac{7}{x+2}=\frac{3}{x-5}\\ \Leftrightarrow\frac{7\left(x-5\right)}{\left(x+2\right)\left(x-5\right)}=\frac{3\left(x+2\right)}{\left(x+2\right)\left(x-5\right)}\\ \Leftrightarrow7\left(x-5\right)=3\left(x+2\right)\\ \Leftrightarrow7\left(x-5\right)-3\left(x+2\right)=0\\ \Leftrightarrow7x-35-3x-6=0\\ \Leftrightarrow4x-41=0\\ \Leftrightarrow4x=41\\ \Leftrightarrow x=\frac{41}{4}\)
\(e.\frac{2x+5}{2x}-\frac{x}{x+5}=0\\ \Leftrightarrow\frac{\left(2x+5\right)\left(x+5\right)}{2x\left(x+5\right)}-\frac{x.2x}{2x\left(x+5\right)}=0\\ \Leftrightarrow\left(2x+5\right)\left(x+5\right)-2x^2=0\\ \Leftrightarrow2x^2+10x+5x+25-2x^2=0\\ \Leftrightarrow15x+25=0\\ \Leftrightarrow15x=-25\\ \Leftrightarrow x=\frac{-25}{15}=\frac{-5}{3}\)
\(f.\frac{12x+1}{11x-4}+\frac{10x-4}{9}=\frac{20x+17}{18}\\\Leftrightarrow\frac{18\left(12x+1\right)}{18\left(11x-4\right)}+\frac{\left(10x-4\right).2\left(11x-4\right)}{9.2\left(11x-4\right)}=\frac{\left(20x+17\right)\left(11x-4\right)}{18\left(11x-4\right)}\\ \Leftrightarrow18\left(12x+1\right)+\left(10x-4\right).2\left(11x-4\right)=\left(20x+17\right)\left(11x-4\right)\\ \Leftrightarrow220x^2+48x+50=220x^2+107x-68\\ \Leftrightarrow48x+50=107x-68\\ \Leftrightarrow48x-107x=-68-50\\ \Leftrightarrow59x=-118\\ \Leftrightarrow x=-2\)
a) \(x^3+4x^2-29x+24=x^3-x^2+5x^2-5x-24x+24\)
\(=x^2\left(x-1\right)+5x\left(x-1\right)-24\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+5x-24\right)\)
\(=\left(x-1\right)\left(x^2+8x-3x-24\right)\)
\(=\left(x-1\right)\left[x\left(x+8\right)-3\left(x+8\right)\right]\)
\(=\left(x-1\right)\left(x+8\right)\left(x-3\right)\)
b) \(x^4+6x^3+7x^2-6x+1\)
\(=x^4+\left(6x^3-2x^2\right)+\left(9x^2-6x+1\right)\)
\(=x^4+2x^2\left(3x-1\right)+\left(3x-1\right)^2\)
\(=\left(x^2+3x-1\right)^2\)
c) \(\left(x^2-x+2\right)^2+\left(x-2\right)^2=x^4-2x^3+6x^2-8x+8\)
\(=\left(x^4-2x^3+2x^2\right)+\left(4x^2-8x+8\right)\)
\(=x^2\left(x^2-2x+2\right)+4\left(x^2-2x+2\right)\)
\(=\left(x^2-2x+2\right)\left(x^2+4\right)\)
d) Phức tạp mà dài quá :v
\(6x^5+15x^4+20x^3+15x^2+6x+1\)
\(=6x^5+3x^4+12x^4+6x^3+14x^3+7x^2+8x^2+4x+2x+1\)
\(=3x^4\left(2x+1\right)+6x^3\left(2x+1\right)+7x^2\left(2x+1\right)+4x\left(2x+1\right)+\left(2x+1\right)\)
\(=\left(2x+1\right)\left(3x^4+6x^3+7x^2+4x+1\right)\)
\(=\left(2x+1\right)\left[\left(3x^4+3x^3+x^2\right)+\left(3x^3+3x^2+x\right)+\left(3x^2+3x+1\right)\right]\)
\(=\left(2x+1\right)\left[x^2\left(3x^2+3x+1\right)+x\left(3x^2+3x+1\right)+\left(3x^2+3x+1\right)\right]\)
\(=\left(2x+1\right)\left(3x^2+3x+1\right)\left(x^2+x+1\right)\)
e)
- Câu này có thể áp dụng định lý: nếu tổng các hệ số biến bậc chẵn và tổng các hệ số biến bậc lẻ bằng nhau thì đa thức có nhân tử x + 1.
- Nhận thấy: 1 + 4 + 4 + 1 = 3 + 4 + 3
\(x^6+3x^5+4x^4+4x^3+4x^2+3x+1\)
\(=(x^6+x^5)+(2x^5+2x^4)+(2x^4+2x^3)+(2x^3+2x^2)+(2x^2+2x)+(x+1)\)
\(=x^5(x+1)+2x^4(x+1)+2x^3(x+1)+2x^2(x+1)+2x(x+1)+(x+1)\)
\(=(x+1)(x^5+2x^4+2x^3+2x^2+2x+1)\)
Tiếp tục phân tích bằng cách trên vì 1 + 2 + 2 = 2 + 2 +1
\(=\left(x+1\right)\left(x+1\right)\left(x^4+x^3+x^2+x+1\right)\)
\(=\left(x+1\right)^2\left(x^4+x^3+x^2+x+1\right)\)
a) Gọi CT ghi hóa trị của NH3 là \(N^xH^I_3\) (x: nguyên, dương)
Theo quy tắc hóa trị, ta có:
\(x.1=I.3\\ =>x=\dfrac{1.I}{3}=III\)
Vậy: Hóa trị của N có hóa trị III trong hợp chất NH3
b) Gọi CT kèm hóa trị của Zn(OH)2 là \(Zn^x\left(OH\right)^y_2\) (x,y: nguyên, dương).
Theo quy tắc hóa trị, ta có:
\(x.1=y.2\\ =>\dfrac{x}{y}=\dfrac{2}{1}=\dfrac{II}{I}\)
=> x=II
y=I
=> Hóa trị của Zn là II trong hợp chất trên
Mấy bài kia phá tung tóe rồi rút gọn hết sức xong thay x vào, làm câu c thôi nhé:
c) \(C=x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)
riêng câu này ta thay x = 9 vào luôn, vậy ta có:
\(C=9^{14}-10\cdot9^{13}+10\cdot9^{12}-10\cdot9^{11}+...+10\cdot9^2-10\cdot9+10\)
\(=9^{14}-\left(9+1\right)\cdot9^{13}+\left(9+1\right)\cdot9^{12}-\left(9+1\right)\cdot9^{11}+...+\left(9+1\right)\cdot9^2-\left(9+1\right)\cdot9+10\)
\(=9^{14}-9^{14}-9^{13}+9^{13}+9^{12}-9^{12}-9^{11}+...+9^3+9^2-9^2-9+10\)
\(=-9+10\)
\(=1\)
a) ( 3.x + 1 ) . ( 7.x + 3 ) = (5.x-7 ) . ( 3.x + 1 )
<=> ( 3.x + 1 ) . ( 7.x + 3 ) - ( 5.x - 7) . ( 3.x + 1 ) = 0
<=> ( 3.x + 1 ) . ( 7.x + 3 - 5.x + 7 ) = 0
<=> ( 3.x + 1 ) . ( 2.x + 10 ) = 0
<=> \(\orbr{\begin{cases}3.x+1=0\\2.x+10=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{3}\\x=-5\end{cases}}}\)
Vậy x = { \(\frac{-1}{3};-5\)}
b) x2 + 10.x + 25 - 4.x . ( x + 5 ) = 0
<=> ( x + 5 )2 -4.x . (x + 5 ) = 0
<=> ( x+ 5 ) . ( x + 5 - 4.x ) = 0
<=> ( x + 5 ) . ( 5 - 3.x ) = 0
<=> \(\orbr{\begin{cases}x+5=0\\5-3.x\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=\frac{5}{3}\end{cases}}}\)
Vậy x = \(\left\{\frac{5}{3};-5\right\}\)
c) (4.x - 5 )2 - 2. ( 16.x2 -25 ) = 0
<=> ( 4.x-5)2 -2 .( 4.x-5) .( 4.x + 5 ) = 0
<=> ( 4.x -5 )2 - ( 8.x+ 10 ) . ( 4.x -5 ) = 0
<=> ( 4.x -5 ) . ( 4.x-5 - 8.x - 10 ) = 0
<=> ( 4.x - 5 ) . ( -4.x - 15 ) = 0
<=> \(\orbr{\begin{cases}4.x-5=0\\-4.x-15=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{4}\\x=\frac{-15}{4}\end{cases}}}\)
Vậy x = \(\left\{\frac{5}{4};\frac{-15}{4}\right\}\)
d) ( 4.x + 3 )2 = 4. ( x2 - 2.x + 1 )
<=> 16.x2 + 24.x + 9 - 4.x2 + 8.x - 4 = 0
<=> 12.x2 + 32.x + 5 =0
<=> 12. ( x +\(\frac{1}{8}\) ) . ( x + \(\frac{5}{2}\)) = 0
<=> \(\orbr{\begin{cases}x+\frac{1}{6}=0\\x+\frac{5}{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{6}\\x=\frac{-5}{2}\end{cases}}}\)
Vậy x = \(\left\{\frac{-1}{6};\frac{-5}{2}\right\}\)
e) x2 -11.x + 28 = 0
<=> x2 -4.x - 7.x + 28 = 0
<=> ( x - 7 ) . ( x - 4 ) = 0
<=> \(\orbr{\begin{cases}x-7=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=4\end{cases}}}\)
Vậy x = { 4 ; 7 }
f ) 3.x.3 - 3.x2 - 6.x = 0
<=> 3.x. ( x2 -x - 2 ) = 0
<=> 3.x. ( x - 2 ) . ( x + 1 ) = 0
<=> \(\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}}\)
\([x=0\) \([x=0\)
( Lưu ý :Lưu ý này không cần ghi vào vở : Chị nối 2 ý đó làm 1 nha cj ! )
Vậy x = { 2 ; -1 ; 0 }
a) \(4x^2+16x+3=0\)
\(\Delta'=84-12=72\Rightarrow\sqrt[]{\Delta'}=6\sqrt[]{2}\)
Phương trình có 2 nghiệm
\(\left[{}\begin{matrix}x=\dfrac{-8+6\sqrt[]{2}}{4}\\x=\dfrac{-8-6\sqrt[]{2}}{4}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-2\left(4-3\sqrt[]{2}\right)}{4}\\x=\dfrac{-2\left(4+3\sqrt[]{2}\right)}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\left(4-3\sqrt[]{2}\right)}{2}\\x=\dfrac{-\left(4+3\sqrt[]{2}\right)}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3\sqrt[]{2}-4}{2}\\x=\dfrac{-3\sqrt[]{2}-4}{2}\end{matrix}\right.\)
b) \(7x^2+16x+2=1+3x^2\)
\(4x^2+16x+1=0\)
\(\Delta'=84-4=80\Rightarrow\sqrt[]{\Delta'}=4\sqrt[]{5}\)
Phương trình có 2 nghiệm
\(\left[{}\begin{matrix}x=\dfrac{-8+4\sqrt[]{5}}{4}\\x=\dfrac{-8-4\sqrt[]{5}}{4}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-4\left(2-\sqrt[]{5}\right)}{4}\\x=\dfrac{-4\left(2+\sqrt[]{5}\right)}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\left(2-\sqrt[]{5}\right)\\x=-\left(2+\sqrt[]{5}\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-2+\sqrt[]{5}\\x=-2-\sqrt[]{5}\end{matrix}\right.\)
c) \(4x^2+20x+4=0\)
\(\Leftrightarrow4\left(x^2+5x+1\right)=0\)
\(\Leftrightarrow x^2+5x+1=0\)
\(\Delta=25-4=21\Rightarrow\sqrt[]{\Delta}=\sqrt[]{21}\)
Phương trình có 2 nghiệm
\(\left[{}\begin{matrix}x=\dfrac{-5+\sqrt[]{21}}{2}\\x=\dfrac{-5-\sqrt[]{21}}{2}\end{matrix}\right.\)
a: \(\Leftrightarrow\left(x+12-3x\right)\left(x+12+3x\right)=0\)
=>(-2x+12)(4x+12)=0
=>x=-3 hoặc x=6
b: \(\Leftrightarrow20x^3-15x^2+45x-45=0\)
=>\(x\simeq0.93\)
d: =>-4x+28+11x=-x+3x+15
=>7x+28=2x+15
=>5x=-13
=>x=-13/5
e: \(\Leftrightarrow4x^3-12x+x=4x^3-3x+5\)
=>-9x=-3x+5
=>-6x=5
=>x=-5/6