Bài 1: Cho ΔABC có AB < AC. Tia phân giác của góc A cắt đường trung trực của BC tại I. Qua I kẻ các đường thẳng vuông góc với hai cạnh của góc A, cắt các tia AB và AC theo thứ tự H và K. Chứng minh rằng:
a) AH = AK
b) BH = CK
c) AK = \(\frac{AC+AB}{2}\), CK = \(\frac{AC-AB}{2}\)
Bài 2: Cho ΔABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N sao cho BM = CN
a) Chứng minh ΔAMN cân
b) BE ⊥ AM (E...
Đọc tiếp
Bài 1: Cho ΔABC có AB < AC. Tia phân giác của góc A cắt đường trung trực của BC tại I. Qua I kẻ các đường thẳng vuông góc với hai cạnh của góc A, cắt các tia AB và AC theo thứ tự H và K. Chứng minh rằng:
a) AH = AK
b) BH = CK
c) AK = \(\frac{AC+AB}{2}\), CK = \(\frac{AC-AB}{2}\)
Bài 2: Cho ΔABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N sao cho BM = CN
a) Chứng minh ΔAMN cân
b) BE ⊥ AM (E ∈ AM, CF ⊥ AN (F ∈ AN). Chứng minh rằng ΔBME = ΔCNF
c) EB và FC kéo dài cắt nhau tại O. Chứng minh AO là tia phân giác góc MAN
d) Qua M kẻ đường thẳng vuông góc với AM, qua N kẻ đường thẳng vuông góc với AN, chúng cắt nhau ở H. Chứng minh ba điểm A, O, H thẳng hàng
Bài 3: Cho ΔABC có M là trung điểm của BC và ti AM là tia phân giác của góc A. Vẽ MI ⊥ AB tại I, MK ⊥ AC tại K. Chứng minh rằng:
a) MI = MK
b) ΔABC cân
c) Cho biết AB = 37, AM = 35. Tính BC
d) Trên tia đối của tia BM lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh ΔADE cân
e) Vẽ BQ ⊥ AD tại Q, CR ⊥ AE tại R. chứng minh ΔABQ = ΔACR
a: Xét ΔAMB và ΔAMC có
AB=AC
AM chung
MB=MC
Do đó: ΔAMB=ΔAMC
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nen AM là đường cao
=>a//BC