tìm số tự nhiên x biết
\(\left(x+5\right)^4\) = \(\left(x+5\right)^6\)
cho A = \(3^3+3^2+3^3+.....+3^{100}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\begin{array}{l}\left( {9x - {2^3}} \right):5 = 2\\9x - {2^3} = 2.5\\9x - 8 = 10\\9x = 18\\x = 2\end{array}\)
Vậy \(x = 2\)
b)
\(\begin{array}{l}\left[ {{3^4} - \left( {{8^2} + 14} \right):13} \right]x = {5^3} + {10^2}\\\left[ {81 - \left( {64 + 14} \right):13} \right]x = 125 + 100\\\left[ {81 - 78:13} \right]x = 125 + 100\\\left[ {81 - 6} \right]x = 225\\75x = 225\\x = 3\end{array}\)
Vậy \(x = 3\)
a/ \(x=\dfrac{-5}{12}\)
b/ \(x\approx-1,9526\)
c/ \(x=\dfrac{21-i\sqrt{199}}{10}\)
d/ \(x=\dfrac{-20}{13}\)
do y>x>0 => \(5^y>5\Rightarrow5^y⋮5\)
Mặt khác, \(2^x,2^x+1,2^x+2,2^x+3,2^x+4\)là 5 số tự nhiên liên tiếp và \(2^x\)không tận cùng bằng 0
=> \(2^x\)+1 hoặc \(2^x\)+3 chia hết cho 5
=> VT \(⋮\)5
Mà 11879 không chia hết cho 5
=> không tồn tại x,y thỏa mãn
Ta có
\(\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)-5^y=11879\)
\(\Leftrightarrow\left(2^{2x}+5\times2^x+4\right)\left(2^{2x}+5\times2^x+6\right)=11879+5^y\)
\(\Leftrightarrow\left(2^{2x}+5\times2^x+5\right)^2=11880+5^y\)
Với y = 0 thì
\(2^{2x}+5\times2^x+5=109\)
\(\Leftrightarrow2^x=8\)
\(\Leftrightarrow x=3\)
Với \(y\ge1\)thì vế trái không chia hết cho 5 còn vế phải chia hết cho 5 nên không tồn tại (x, y) thỏa cái đó
Vậy có duy nhất 1 cặp nghiệm tự nhiên là (x, y) = (3, 0)
a) Ta có: \(A=\left(\dfrac{2}{x+2}-\dfrac{1}{x-3}+\dfrac{5-x}{x^2-x-6}\right)\cdot\left(x-\dfrac{6}{x-1}\right)\)
\(=\left(\dfrac{2\left(x-3\right)}{\left(x+2\right)\left(x-3\right)}-\dfrac{x+2}{\left(x-3\right)\left(x+2\right)}+\dfrac{5-x}{\left(x-3\right)\left(x+2\right)}\right)\cdot\dfrac{x\left(x-1\right)-6}{x-1}\)
\(=\dfrac{2x-6-x-2+5-x}{\left(x+2\right)\left(x-3\right)}\cdot\dfrac{x^2-x-6}{x-1}\)
\(=\dfrac{-3}{x-1}\)
\(\left(1\dfrac{3}{4}-\dfrac{4}{6}\right):\left(1\dfrac{1}{5}+2\dfrac{2}{5}+\dfrac{1}{5}\right)< x< 1\dfrac{1}{5}.1\dfrac{1}{4}+3\dfrac{2}{11}:2\dfrac{3}{121}\)
\(\Leftrightarrow\left(\dfrac{7}{4}-\dfrac{4}{6}\right):\left(\dfrac{6}{5}+\dfrac{12}{5}+\dfrac{1}{5}\right)< x< \dfrac{6}{5}.\dfrac{5}{4}+\dfrac{35}{11}:\dfrac{245}{121}\) \(\Leftrightarrow\left(\dfrac{21}{12}-\dfrac{8}{12}\right):\dfrac{19}{5}< x< \dfrac{3}{2}+\dfrac{35}{11}.\dfrac{121}{245}\) \(\Leftrightarrow\dfrac{13}{12}.\dfrac{5}{19}< x< \dfrac{3}{2}+\dfrac{2}{7}\) \(\Leftrightarrow\dfrac{65}{228}< x< \dfrac{21}{14}+\dfrac{4}{14}\) \(\Leftrightarrow\dfrac{65}{228}< x< \dfrac{25}{14}\) \(\Leftrightarrow x=1\)
\(\left(x+5\right)^4=\left(x+5\right)^6\)
\(\Rightarrow\left(x+5\right)^4-\left(x+5\right)^6=0\)
\(\Rightarrow\left(x+5\right)-\left(x+5\right)^2=0\)
\(\Rightarrow\)\(x=-4\)
Câu 2 : không có yêu cầu đề bài thì làm kiểu gì?
\(\left(x+5\right)^4=\left(x+5\right)^6\)
\(\Rightarrow\left(x+5\right)^6-\left(x+5\right)^4=0\)
\(\Rightarrow\left(x+5\right)^4.\left[\left(x+5\right)^2-1\right]=0\)
\(\Rightarrow\left(x+5\right)^4=0\)hoặc \(\left(x+5\right)^2-1=0\)
=> x + 5 = 0 hoặc (x + 5)2 = 1
=> x + 5 = 0 hoặc x + 5 = 1 hoặc x + 5 = -1
=> x = -5 hoặc x = -4 hoặc x = -6