Cho tam giác OPQ cân tại O, I là trung điểm của PQ. IM // OQ (M thuộc OP), IN // OP (N thuộc OQ). CMR: a) Tam giác IMN cân tại I
b) OI là đường trung trực MN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔOPQ có
I là trung điểm của PQ
IN//OP
Do đó: N là trung điểm của OQ
Xét ΔOPQ có
I là trung điểm của PQ
IM//OQ
Do đó: M là trung điểm của OP
Xét ΔMPI và ΔNQI có
MP=NQ
\(\widehat{P}=\widehat{Q}\)
PI=QI
Do đó: ΔMPI=ΔNQI
Suy ra: IM=IN
hay ΔIMN cân tại I
2: Ta có: OM=ON
nên O nằm trên đường trung trực của MN(1)
Ta có: IM=IN
nên I nằm trên đường trung trực của MN(2)
Từ (1) và (2) suy ra OI là đường trung trực của MN
bạn tự vẽ hình nhé
vì IN//OP => ^OQP = ^MIP ( 2 góc đồng vị)
và IM//OQ =>^OPQ =^NIQ (2 góc đồng vị )
Xét tam giác NOI và tam giác MIP ta có
^NOI=^MIP (C/m)
IQ=IP (I là trung điểm của PQ)
^NIQ =^MIP (C/m)
=> tam giác NOI = Tam giác MIP (g-c-g)
=> NI =MI (2 cạnh tương ứng)
=> tam giác IMN cân tại I
a: Xét ΔQOP có QM/QO=QK/QP
nênMK//OP và MK=OP/2
=>MK//OI và MK=OI
=>OIKM là hình bình hành
mầ góc MOI=90 độ
nên OIKM là hình chữ nhật
b: Để OIKM là hình vuông thì OI=OM
=>OP=OQ
c: \(S_{OPQ}=\dfrac{1}{2}\cdot10\cdot15=75\left(cm^2\right)\)
\(S_{OIKM}=5\cdot7.5=37.5\left(cm^2\right)\)