tìm giá trị nhỏ nhất của biểu thức sau: ( x-15)^2 + 2018
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\left(x-1\right)^2\ge0\)
\(\Rightarrow\)\(2018-\left(x-1\right)^2\le2018\)
Dấu "=" xảy ra khi và chỉ khi \(\left(x-1\right)^2=1\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}}\)
Vậy GTLN của biểu thức \(2018-\left(x-1\right)^2\) là \(2018\) khi \(x=0\) hoặc \(x=2\)
Chúc bạn học tốt ~
Ta có :
\(\left|x-5\right|\ge5\)
\(\Rightarrow\)\(\left|x-5\right|+120\ge120\)
Dấu "=" xảy ra khi và chỉ khi \(\left|x-5\right|=0\)
\(\Leftrightarrow\)\(x-5=0\)
\(\Leftrightarrow\)\(x=5\)
Vậy GTNN của biểu thức \(\left|x-5\right|+120\) là \(120\) khi \(x=5\)
Chúc bạn học tốt ~
\(F=\left|2018-x\right|+\left|2019-x\right|\)
\(=\left|2018-x\right|+\left|x-2019\right|\)
Ta có :
\(\left|2018-x\right|+\left|x-2019\right|\ge\left|2018-x+x-2019\right|\)
=> \(F\ge\left|-1\right|\)
=> \(F\ge1\)
Dấu = xảy ra khi : ( 2018 - x ) ( x - 2019 ) > 0
TH1 : \(\hept{\begin{cases}2018-x>0\\x-2019>0\end{cases}}\)
=> \(\hept{\begin{cases}x< 2018\\x>2019\end{cases}}\)
=> 2019 < x < 2018 ( vô lí - loại )
TH2 : \(\hept{\begin{cases}2018-x< 0\\x-2019< 0\end{cases}}\)
=> \(\hept{\begin{cases}x>2018\\x< 2019\end{cases}}\)
=> 2018 < x < 2019
Vậy giá trị nhỏ nhất của F là 1 khi x thỏa mãn 2018 < x < 2019
\(A=\left|x+4\right|+28\)
Ta thấy \(\left|x+4\right|\ge0\) với mọi \(x\)
=> \(\left|x+4\right|+28\ge28\)
=> \(A\ge28\)
Dấu bằng xảy ra khi \(\left|x+4\right|=0\)
<=> \(x+4=0\)
<=> \(x=-4\)
Vậy giá trị nhỏ nhất của \(A=28\) tại \(x=-4\)
\(B=2018-\left|x+9\right|\)
Ta thấy \(\left|x+9\right|\ge0\)với mọi \(x\)
=> \(2018-\left|x+9\right|\le2018\)
=> \(B\le2018\)
Dấu bằng xảy ra khi \(\left|x+9\right|=0\)
<=> \(x+9=0\)
<=> \(x=-9\)
Vậy giá trị lớn nhất của \(B=2018\)tại \(x=-9\)
a, \(A=\left|x-2017\right|+\left|2018-x\right|\ge\left|x-2017+2018-x\right|=1\)
Vậy \(Min=1\Leftrightarrow2017\le x\le2018\)
b, \(B=\dfrac{x^2+4+8}{x^2+4}=1+\dfrac{8}{x^2+4}\)
Thấy : \(x^2+4\ge4\)
\(\Rightarrow B=1+\dfrac{8}{x^2+4}\le3\)
Vậy \(Max=3\Leftrightarrow x=0\)
\(\left|x-3\right|>=0\forall x\)
=>\(\left|x-3\right|+2>=2\forall x\)
=>\(\left(\left|x-3\right|+2\right)^2>=2^2=4\forall x\)
Ta có: \(\left(\left|x-3\right|+2\right)^2>=4\forall x\)
\(\left|y+3\right|>=0\forall y\)
Do đó: \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4+0=4\forall x,y\)
=>\(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2018>=4+2018=2022\forall x,y\)
=>\(P>=2022\forall x,y\)
Dấu '=' xảy ra khi x-3=0 và y+3=0
=>\(\left\{{}\begin{matrix}x=3\\y=-3\end{matrix}\right.\)
Ta có: \(\left(x-15\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-15\right)^2+2018\ge2018\forall x\)
Dấu ' = ' xảy ra \(\Leftrightarrow\left(x-15\right)^2=0\Leftrightarrow x=15\)
Vậy GTNN của biểu thức \(\left(x-15\right)^2+2018=2018\Leftrightarrow x=15\)
Tham khảo nhé~
\(\left(x-15\right)^2+2018\)
Ta có:\(\left(x-15\right)^2\ge0;2018>0\)
\(\Rightarrow\left(x-15\right)^2+2018\ge2018\)
Vậy GTNN của biểu thức =2018