K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2020

Bài 1.

a.Ta có: (x - 1)2  ≥ 0 với mọi x ∈ Z

=> (x - 1)2 + 12 ≥ 12 với mọi x ∈ Z

Dấu "=" xảy ra khi (x - 1)2 = 0

=> x - 1 = 0

=> x = 1

Vậy GTNN của A là 12 tại x = 1.

b. Có: |x + 3| ≥ 0 với mọi x ∈ Z

=> |x + 3| + 2020 ≥ 2020 với mọi x ∈ Z

Dấu "=" xảy ra khi |x + 3| = 0

=> x + 3 = 0

=> x = -3

Vậy GTNN của B là 2020 tại x = -3.

Bài 2.

Có: |3 - x| ≥ 0 với mọi x ∈ Z

=> 20 - |3 - x| ≥ 20 với mọi x ∈ Z

Dấu "=" xảy ra khi |3 - x| = 0

=> 3 - x = 0

=> x = 3

Vậy GTLN của Q là 20 tại x = 3.

19 tháng 7 2020

1. A = ( x - 1 )2 + 12

\(\left(x-1\right)^2\ge0\forall x\Rightarrow\left(x-1\right)^2+12\ge12\forall x\)

Dấu = xảy ra <=> x - 1 = 0 => x = 1

Vậy AMin = 12 khi x = 1

B = | x + 3 | + 2020

\(\left|x+3\right|\ge0\forall x\Rightarrow\left|x+3\right|+2020\ge2020\forall x\)

Dấu = xảy ra <=> x + 3 = 0 => x = -3

Vậy BMin = 2020 khi x = -3 

2. ( Bạn LOVE MYSELF sai dấu rồi nhé ... \(\le\)chứ )

Q = 20 - | 3 - x | 

\(\left|3-x\right|\ge0\Rightarrow-\left|3-x\right|\le0\)

=> \(20-\left|3-x\right|\le20\forall x\)

Dấu = xảy ra <=> 3 - x = 0 => x = 3

Vậy QMax = 20 khi x = 3 

2 tháng 5 2017

Bài 1:

a, Ta có: (x - 1)2 \(\ge\)0 với mọi x

=> A = (x - 1)2 + 2016 \(\ge\)2016 

Dấu "=" xảy ra <=> (x-1)2 = 0 <=> x = 1

Vậy GTNN của A = 2016 tại x = 1

b, Ta có: |x + 4| \(\ge\)0 với mọi x

=> B = |x + 4| + 2017 \(\ge\)2017

Dấu "=" xảy ra <=> |x + 4| = 0 <=> x = -4

Vây GTNN của B = 2017 tại x = -4

Bài 2:

a, Ta có: (x + 1)2016 \(\ge\)0 với mọi x

=> P = 2010 - (x + 1)2016 \(\ge\)2010

Dấu "=" xảy ra <=> (x + 1)2016 = 0 <=> x = -1

Vậy GTLN của P = 2010 tại x = -1

b, Ta có: |3 - x| \(\ge\)0 với mọi x

=> Q = 2010 - |3 - x| \(\ge\)2010

Dấu "=" xảy ra <=> |3 - x| = 0 <=> x = 3

Vậy GTLN của Q = 2010 tại x = 3

8 tháng 4 2023

A = \(\dfrac{2x-1}{x+2}\) 

a, A là phân số ⇔ \(x\) + 2  # 0  ⇒ \(x\) # -2

b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2 

                                          ⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2

                                         ⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2

                                         ⇒ 5 ⋮ \(x\) + 2

                            ⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}

                            ⇒  \(x\)   \(\in\) { -7; -3; -1; 3}

c, A = \(\dfrac{2x-1}{x+2}\) 

  A = 2 - \(\dfrac{5}{x+2}\)

Với \(x\) \(\in\) Z và \(x\) < -3 ta có

                     \(x\) + 2 < - 3 + 2 = -1

              ⇒  \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\)  = -5  ⇒ - \(\dfrac{5}{x+2}\)<  5

              ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)

Với \(x\)  > -3;  \(x\) # - 2; \(x\in\)  Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1

            \(\dfrac{5}{x+2}\) > 0  ⇒  - \(\dfrac{5}{x+2}\)  < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)

Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)

Kết hợp (1); (2) và(3)  ta có A(max) = 7 ⇔ \(x\) = -3

 

                     

             

                                   

     

 

            

7 tháng 3 2019

\(A=\frac{x-5}{x-3}=\frac{x-3-2}{x-3}=\frac{x-3}{x-3}-\frac{2}{x-3}=1-\frac{2}{x-3}\)

Để A đạt giá trị nhỏ nhất thì \(\frac{2}{x-3}\) đạt giá trị lớn nhất \(\Leftrightarrow x-3\)đạt giá trị nguyên dương nhỏ nhất \(\Leftrightarrow x-3=1\Leftrightarrow x=4\)

Vậy với x=4 thì A đạt giá trị nhỏ nhất.

1 tháng 5 2017

Ta có: \(\left(x-1\right)^2\ge0\)

\(\Rightarrow A=\left(x-1\right)^2+2008\ge2008\)

Dấu "=" xảy ra <=> (x-1)^2 = 0 <=> x = 1

Vậy GTNN của A = 2008 tại x = 1

1 tháng 5 2019

a.\(A=\left(x-1\right)^2+2008\)

Ta có: \(\left(x-1\right)^2\ge0\) nên \(A=\left(x-1\right)^2+2008\ge2008\)

Vậy Amin \(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=0+1\)

\(\Leftrightarrow x=1\)

Vậy Amin = 2008 \(\Leftrightarrow\) x = 1

1 tháng 5 2019

b. \(B=\left|x+4\right|+1996\)

Ta có: \(\left|x+4\right|\ge0\) nên \(B=\left|x+4\right|+1996\ge1996\)

Vậy Bmin\(\Leftrightarrow\) \(\left|x+4\right|=0\)

\(\Leftrightarrow x+4=0\)

\(\Leftrightarrow x=0-4\)

\(\Leftrightarrow x=-4\)

Vậy Bmin = 1996 \(\Leftrightarrow x=-4\)

13 tháng 3 2015

 Bài 1

a) có (x-1)^2 lon hơn hoặc bằng 0

       => ( x-1)^2 + 2008  lớn hơn hoac bang 2008

       => A  lớn hơn hoac bang 2008

 vay giai tri nho nhát la .2008

b) có | x+4| lon hon hoặc bang 0

=>| x+4| + 1996 lon hon hoặc bang 1996

=> B lon hon hoặc bang 1996

vay B nho nhất  la 1996

bai 2 

a)-( x+1)^2008 nho hơn hoặc bang 0

=> 2010- (x+ 1)^2008 nho hơn hoặc bang  2010

=> P nho hon hoặc bang 2008

vay gia tri lon nhất của P là 2008

những phần kia tương tự như vậy, nhớ like nhé

 

 

22 tháng 8 2017

a)
x2 - 4x + 3 = x2 - x - 3x + 3
= x(x - 1) - 3(x - 1) = (x -1)(x - 3)
b)
x2 + 5x + 4 = x2 + 4x + x + 4
= x(x + 4) + (x + 4)
= (x + 4)(x + 1)

12 tháng 5 2020

A=|x-9|+10

Ta có |x-9| >= 0 với mọi x

=> |x-9|+10 >= 0+10

hay A >= 10

Dấu "=" xảy ra <=> |x-9|=0

<=> x-9=0

<=> x=9

Vậy Min A=10 đạt được khi x=9

12 tháng 5 2020

A = |x - 9| + 10

Ta có: \(\left|x-9\right|\ge0\)với \(\forall x\)

\(\Rightarrow\left|x-9\right|+10\ge10\)

Dấu "=" xảy ra khi:

|x - 9| = 0

=> x - 9 = 0

=> x = 9

Vậy AMIN = 10 khi x = 9