K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2018

Ta có: \(\left(x-15\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-15\right)^2+2018\ge2018\forall x\)

Dấu ' = ' xảy ra \(\Leftrightarrow\left(x-15\right)^2=0\Leftrightarrow x=15\)

Vậy GTNN của biểu thức \(\left(x-15\right)^2+2018=2018\Leftrightarrow x=15\)

Tham khảo nhé~

3 tháng 8 2018

\(\left(x-15\right)^2+2018\)

 Ta có:\(\left(x-15\right)^2\ge0;2018>0\)

   \(\Rightarrow\left(x-15\right)^2+2018\ge2018\)

Vậy GTNN của biểu thức =2018

26 tháng 9 2018

có |của một số|>0

==>giá trị nhỏ nhất của F =1

=> x=2018

26 tháng 9 2018

\(F=\left|2018-x\right|+\left|2019-x\right|\)

     \(=\left|2018-x\right|+\left|x-2019\right|\)

Ta có :

\(\left|2018-x\right|+\left|x-2019\right|\ge\left|2018-x+x-2019\right|\)

=> \(F\ge\left|-1\right|\)

=> \(F\ge1\)

Dấu = xảy ra khi : ( 2018 - x ) ( x - 2019 ) > 0

TH1 : \(\hept{\begin{cases}2018-x>0\\x-2019>0\end{cases}}\)

=> \(\hept{\begin{cases}x< 2018\\x>2019\end{cases}}\)

=> 2019 < x < 2018 ( vô lí - loại )

TH2 : \(\hept{\begin{cases}2018-x< 0\\x-2019< 0\end{cases}}\)

=> \(\hept{\begin{cases}x>2018\\x< 2019\end{cases}}\)

=> 2018 < x < 2019

Vậy giá trị nhỏ nhất của F là 1 khi x thỏa mãn 2018 < x < 2019

3 tháng 7 2021

a, \(A=\left|x-2017\right|+\left|2018-x\right|\ge\left|x-2017+2018-x\right|=1\)

Vậy \(Min=1\Leftrightarrow2017\le x\le2018\)

b, \(B=\dfrac{x^2+4+8}{x^2+4}=1+\dfrac{8}{x^2+4}\)

Thấy : \(x^2+4\ge4\)

\(\Rightarrow B=1+\dfrac{8}{x^2+4}\le3\)

Vậy \(Max=3\Leftrightarrow x=0\)

3 tháng 7 2021

là GTNN á

\(\left|x-3\right|>=0\forall x\)

=>\(\left|x-3\right|+2>=2\forall x\)

=>\(\left(\left|x-3\right|+2\right)^2>=2^2=4\forall x\)

Ta có: \(\left(\left|x-3\right|+2\right)^2>=4\forall x\)

\(\left|y+3\right|>=0\forall y\)

Do đó: \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4+0=4\forall x,y\)

=>\(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2018>=4+2018=2022\forall x,y\)

=>\(P>=2022\forall x,y\)

Dấu '=' xảy ra khi x-3=0 và y+3=0

=>\(\left\{{}\begin{matrix}x=3\\y=-3\end{matrix}\right.\)

23 tháng 10 2018

Vì \(\left|x-2019\right|\ge0\forall x\)

\(\Rightarrow A\ge2018\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-2019=0\Leftrightarrow x=2019\)

Vậy Amin = 2018 <=> x = 2019

DD
6 tháng 2 2021

Với \(x-2018>0\Leftrightarrow x>2018\)

\(A=x-2018+x-1=2x-2019>2.2018-2019=2017\)

Với \(x-2018\le0\Leftrightarrow x\le2018\)

\(A=2018-x+x-1=2017\)

Vậy \(minA=2017\)đạt tại \(x\le2018\).

6 tháng 2 2021

min A=2017 nha bạn

3 tháng 8 2018

Ta có :

Để ( x-15)2 + 2018 nhỏ nhất thì :

( x-15)2 nhỏ nhất.

Mà (x - 15)2 ≥ 0 nên :

Min(x-15)2 = 0 ⇒ GTNN = 2018

7 tháng 8 2018

Ta có | x + 1 | \(\ge\)\(\forall\)x

=> 5 . | x + 1 | \(\ge\)\(\forall\)x

=> 2018 + 5 . | x + 1 | \(\ge\)2018 \(\forall\)x

Dấu " = " xảy ra <=> x + 1 = 0 => x = -1

Vậy, GTNN của A = 2018 khi và chỉ khi x = -1

7 tháng 8 2018

ta có :|x+1| >=0

  =>  5|x+1|>=0

=>  2018+5|x+1|>= 2018

dấu = xảy ra khi  |x+1|=0

                          x+1=0

                          x=-1

 vay gtnn cua bieu thuc tren la 2018  khi x=-1

21 tháng 12 2021

\(A\ge\left|3x+2+2018-3x\right|=2020\)

 

AH
Akai Haruma
Giáo viên
21 tháng 12 2021

Lời giải:
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$A=|3x+2|+|3x-2018|=|3x+2|+|2018-3x|$

$\geq |3x+2+2018-3x|=2020$
Vậy GTNN của $A$ là $2020$. Giá trị này đạt tại $(3x+2)(2018-3x)\geq 0$

$\Leftrightarrow -\frac{2}{3}\leq x\leq \frac{2018}{3}$