Rút gọn biểu thức
a, \(3^{n+2}-3^{n+1}+6.3^n\)
b, \(\left(3.2^{n+2}+2^n+2^{n+1}\right):5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S\left(x\right)=\dfrac{1}{x^2}+\dfrac{2}{x^3}+...+\dfrac{n}{x^{n+1}}\)
\(\Rightarrow x.S\left(x\right)=\dfrac{1}{x}+\dfrac{2}{x^2}+\dfrac{3}{x^3}+...+\dfrac{n}{x^n}\)
\(\Rightarrow x.S\left(x\right)-S\left(x\right)=\dfrac{1}{x}+\dfrac{1}{x^2}+\dfrac{1}{x^3}+...+\dfrac{1}{x^n}-\dfrac{n}{x^{n+1}}\)
\(\Rightarrow\left(x-1\right)S\left(x\right)=\dfrac{1}{x}.\dfrac{1-\left(\dfrac{1}{x}\right)^n}{1-\dfrac{1}{x}}-\dfrac{n}{x^{n+1}}=\dfrac{x^n-1}{x^n\left(x-1\right)}-\dfrac{n}{x^{n+1}}=\dfrac{x^{n+1}-x-n\left(x-1\right)}{x^{n+1}\left(x-1\right)}\)
\(\Rightarrow S\left(x\right)=\dfrac{x^{n+1}-\left(n+1\right)x+n}{x^{n+1}\left(x-1\right)^2}\)
\(A=1+2+...+\left(n-1\right)=\frac{n\left(n-1\right)}{2}\)
\(B=\left(n-1\right)+..+2+1=\frac{\left(n-1\right)n}{2}\)
\(A+n+B=\frac{\left(n-1\right)n}{2}+n+\frac{\left(n-1\right)n}{2}=\left(n-1\right)n+n=n^2\)
n là tự nhiên \(\sqrt{n^2}=n\)
\(A=\dfrac{n!+2}{\dfrac{n!}{\left(n-k\right)!}\cdot n!-k}+\dfrac{3003+10010+6435}{19448}\)
\(=\dfrac{n!+2}{n\left(n-1\right)\cdot...\cdot\left(n-k+1\right)\cdot n!-k}+1=\dfrac{n!+2+\dfrac{n!^2}{\left(n-k\right)!}-k}{\dfrac{n!^2}{\left(n-k\right)!}-k}\)
\(B=\dfrac{n!-\left(n-1\right)!}{\left(n-2\right)!}=\dfrac{\left(n-1\right)!\left(n-1\right)}{\left(n-2\right)!}=\left(n-1\right)^2=n^2-2n+1\)
\(a,3^{n+2}-3^{n+1}+6.3^n\)
\(=3^n\left(3^2-3+6\right)=3^n.12\)
\(b,\left(3.2^{n+2}+2^n+2^{n+1}\right):5\)
\(=\left[2^n\left(3.2^2+1+2\right)\right]:5\)
\(=2^n.15:5\)
\(=2^n.3\)