Phân tích đa thức thành nhân tử: \(x^3-12x-y^3+6y^2-16=0\)
Jup e vs ạ @Akai Haruma; @Aki Tsuki; @Mysterious Person.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-y^2+6y-9=x^2-\left(y^2-6y+9\right)\)
\(=x^2-\left(y-3\right)^2\)
\(=\left(x+y-3\right)\left(x-y+3\right)\)
\(x^2-y^2+10x-6y+16\)
\(=\left(x^2+10x+25\right)-\left(y^2+6y+9\right)\)
\(=\left(x+5\right)^2-\left(y+3\right)^2\)
\(=\left(x+5-y-3\right)\left(x+5+y+3\right)\)
\(=\left(x-y+2\right)\left(x+y+8\right)\)
b: \(x^2-6x+xy-6y\)
\(=x\left(x-6\right)+y\left(x-6\right)\)
\(=\left(x-6\right)\left(x+y\right)\)
c: \(2x^2+2xy-x-y\)
\(=2x\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(2x-1\right)\)
e: \(x^3-3x^2+3x-1=\left(x-1\right)^3\)
\(x^4+3x^3+12x-16\)
\(=x^4+4x^3+4x^2+16x-x^3-4x^2-4x-16\)
\(=x\left(x^3+4x^2+4x+16\right)-\left(x^3+4x^2+4x+16\right)\)
\(=\left(x-1\right)\left(x^3+4x^2+4x+16\right)\)
\(=\left(x-1\right)\left[x^2\left(x+4\right)+4\left(x+4\right)\right]\)
\(=\left(x-1\right)\left(x+4\right)\left(x^2+4\right)\)
bài 1:= \(2x\left(x-3\right)-6\left(x-3\right)+2y\left(x-3\right)\)
=\(2\left(x-3\right)\left(x+y-3\right)\)
bài 2:P=\(x^2-2x+1+y^2+6y+9+2\)
P=\(\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\)
vậy Pmin=2 khi x=1 và y=-3
a: \(x^2+12x+36=0\)
=>\(x^2+2\cdot x\cdot6+6^2=0\)
=>\(\left(x+6\right)^2=0\)
=>x+6=0
=>x=-6
b: \(4x^2-4x+1=0\)
=>\(\left(2x\right)^2-2\cdot2x\cdot1+1^2=0\)
=>\(\left(2x-1\right)^2=0\)
=>2x-1=0
=>2x=1
=>x=1/2
c: \(x^3+6x^2+12x+8=0\)
=>\(x^3+3\cdot x^2\cdot2+3\cdot x\cdot2^2+2^3=0\)
=>\(\left(x+2\right)^3=0\)
=>x+2=0
=>x=-2
a) \(x^3+3x^2+3x+1=\left(x+1\right)^3\)
b) \(x^3-6x^2+12x-8=\left(x-2\right)^3\)
c) \(x^2-2xy+y^2-16=\left(x-y\right)^2-4^2=\left(x-y+4\right)\left(x-y-4\right)\)
d) \(49-x^2+2xy-y^2=7^2-\left(x-y\right)^2=\left(7+x-y\right)\left(7-x+y\right)\)
x^2 - 2x - 15
= x^2 - 5x + 3x - 15
= ( x^2 + 3x ) - (5x +15 )
= x ( x +3 ) - 5 ( x + 3 )
(x + 3 ) ( x - 5 )
ta có : \(x^3-12x-y^3+6y^2-16\)
\(=x^3-\left(y^3-6y^2+12y-8\right)-12x+12y-24\)
\(=x^3-\left(y-2\right)^3-12\left(x-y+2\right)\)
\(=\left(x-y+2\right)\left(x^2+x\left(y-2\right)+\left(y-2\right)^2\right)-12\left(x-y+2\right)\)
\(=\left(x-y+2\right)\left(x^2+xy-2x+y^2-4y+4\right)-12\left(x-y+2\right)\)
\(=\left(x-y+2\right)\left(x^2+y^2+xy-2x-4y-8\right)\)