K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2018

ta có : \(x^3-12x-y^3+6y^2-16\)

\(=x^3-\left(y^3-6y^2+12y-8\right)-12x+12y-24\)

\(=x^3-\left(y-2\right)^3-12\left(x-y+2\right)\)

\(=\left(x-y+2\right)\left(x^2+x\left(y-2\right)+\left(y-2\right)^2\right)-12\left(x-y+2\right)\)

\(=\left(x-y+2\right)\left(x^2+xy-2x+y^2-4y+4\right)-12\left(x-y+2\right)\)

\(=\left(x-y+2\right)\left(x^2+y^2+xy-2x-4y-8\right)\)

14 tháng 9 2017

Chọn đáp án C.

30 tháng 11 2021

\(=x^2-\left(y-4\right)^2\)

\(=\left(x-y+4\right)\left(x+y-4\right)\)

30 tháng 11 2021

\(=x^2-\left(y^2-8y+16\right)=x^2-\left(y-4\right)^2=\left(x-y+4\right)\left(x+y-4\right)\)

19 tháng 2 2022

\(\Delta=27^2-4.168=57>0\)

pt có 2 nghiệm pb 

\(x=\dfrac{27\pm\sqrt{57}}{2}\)

19 tháng 2 2022

phân tích thành đa nhân tử mà tú

đâu phải giải pt đâu

\(5-7x^2=\left(\sqrt{5}\right)^2-\left(x\sqrt{7}\right)^2\)

\(=\left(\sqrt{5}-x\sqrt{7}\right)\left(\sqrt{5}+x\sqrt{7}\right)\)

\(3+4x=\left(\sqrt{3}\right)^2-\left(2\sqrt{x}\right)^2\) ( do x<0 )

\(=\left(\sqrt{3}-2\sqrt{x}\right)\left(3+2\sqrt{x}\right)\)

16 tháng 7 2018

ĐKXĐ : \(x\ne0\)

Câu a :

\(A=\sqrt{\dfrac{\left(x^2-3\right)^2+12x^2}{x^2}}+\sqrt{\left(x+2\right)^2-8x}\)

\(=\sqrt{\dfrac{x^4-6x^2+9+12x^2}{x^2}}+\sqrt{x^2+4x+4-8x}\)

\(=\sqrt{\dfrac{x^4+6x^2+9}{x^2}}+\sqrt{x^2-4x+4}\)

\(=\sqrt{\dfrac{\left(x^2+3\right)^2}{x^2}}+\sqrt{\left(x-2\right)^2}\)

\(=\left|\dfrac{x^2+3}{x}\right|+\left|x-2\right|\)

\(=\left|\dfrac{x^2}{x}+\dfrac{3}{x}\right|+\left|x-2\right|\)

Câu b :

Để \(A\in Z\Leftrightarrow\left|\dfrac{x^2}{x}+\dfrac{3}{x}\right|+\left|x-2\right|\in Z\)

\(\Leftrightarrow\dfrac{3}{x}\in Z\) ( Vì \(x^2⋮x\) )

\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\x=-1\\x=1\\x=3\end{matrix}\right.\)

Vậy \(x=-3;x=-1;x=1;x=3\) thì A đạt giá trị nguyên .

Chúc bạn học tốt !!

=x^3(x+1)+x+1

=(x+1)(x^3+1)

=(x+1)^2(x^2-x+1)

12 tháng 6 2023

cảm ơn rất nhiều ạ 

 

15 tháng 12 2023

\(\left(x+y+z\right)^3-x-y-z\\ =\left(x+y+z\right)^3-\left(x+y+z\right)\\ =\left(x+y+z\right)\left(\left(x+y+z\right)^2-1\right)\\ =\left(x+y+z\right)\left(x+y+z-1\right)\left(x+y+z+1\right)\)

11 tháng 7 2021

\(2+\sqrt{3}+\sqrt{6}+\sqrt{8}=2+\sqrt{3}+\sqrt{6}+2\sqrt{2}\)

\(=2+\sqrt{3}+\sqrt{2}\left(2+\sqrt{3}\right)=\left(2+\sqrt{3}\right)\left(\sqrt{2}+1\right)\)

\(2+\sqrt{3}+\sqrt{6}+\sqrt{8}=\left(\sqrt{2}+1\right)\left(2+\sqrt{3}\right)\)