cho tam giác ABC có góc A vuông , D và E lần lượt là trung điểm của AB,BC.trên tia ED lấy F sao cho D là trung điểm EF , gọi CF giao với AE tại G , DG giao với AC tại I.CM:EC^2+2AC^2=EF^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔCAB có
D,E lần lượt là trung điểm của BA,BC
=>DE là đường trung bình của ΔCAB
=>DE//AC
DE//AC
AB\(\perp\)AC
Do đó: DE\(\perp\)AB
AB=2AC
AB=2AD=2BD
Do đó: AD=BD=AC
Xét tứ giác ADFC có
\(\widehat{CFD}=\widehat{CAD}=\widehat{ADF}=90^0\)
=>ADFC là hình chữ nhật
Hình chữ nhật ADFC có AC=AD
nên ADFC là hình vuông
a: Xét tứ giác ADEF ccó
gócc ADE=góc AFE=góc FAD=90 độ
nên ADEF là hình chữ nhật
b: Xét tứ giác AECK có
Dlà trung điểm chung của AC và EK
EA=EC
Do đó: AECK là hình thoi
c: ΔEMA vuông tại M
mà MO là trung tuyến
nên MO=EA/2=DF/2
Xét ΔMDF có
MO là trung tuyến
MO=DF/2
Do đó: ΔMDF vuông tại M
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Ta có: ΔAMB=ΔAMC
=>\(\widehat{BAM}=\widehat{CAM}\)
=>\(\widehat{DAK}=\widehat{EAK}\)
=>AK là phân giác của góc DAE
Xét ΔADE có
AK là đường cao
AK là đường phân giác
Do đó: ΔADE cân tại A
c: Xét ΔBAC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
nên DE//BC
mà F\(\in\)DE và M\(\in\)BC
nên EF//MC
Xét tứ giác EFCM có
EF//CM
EF=CM
Do đó: EFCM là hình bình hành
=>EC cắt FM tại trung điểm của mỗi đường
mà H là trung điểm của EC
nên H là trung điểm của FM
=>F,H,M thẳng hàng
a: Xét tứ giác ADEF có
\(\widehat{ADE}=\widehat{AFE}=\widehat{DAF}=90^0\)
=>ADEF là hình chữ nhật
b: Xét ΔABC có
E là trung điểm của CB
ED//AB
Do đó: D là trung điểm của AC
Xét tứ giác AECK có
D là trung điểm chung của AC và EK
=>AECK là hình bình hành
Hình bình hành AECK có AC\(\perp\)EK
nên AECK là hình thoi
c: Xét ΔABC có
E,D lần lượt là trung điểm của CB,CA
=>ED là đường trung bình của ΔABC
=>\(ED=\dfrac{AB}{2}\)
mà \(ED=\dfrac{EK}{2}\)
nên EK=AB
Ta có: ED//AB
D\(\in\)EK
Do đó: EK//AB
Ta có: ADEF là hình chữ nhật
=>AE cắt DF tại trung điểm của mỗi đường
=>O là trung điểm chung của AE và DF
Xét tứ giác ABEK có
KE//AB
KE=AB
Do đó: ABEK là hình bình hành
=>AE cắt BK tại trung điểm của mỗi đường và AE=BK
mà O là trung điểm của AE
nên O là trung điểm của BK
=>B,O,K thẳng hàng
ΔEMA vuông tại M
mà MO là đường trung tuyến
nên \(MO=\dfrac{AE}{2}\)
mà AE=DF
nên \(MO=\dfrac{DF}{2}\)
Xét ΔDMF có
MO là đường trung tuyến
MO=DF/2
Do đó: ΔDMF vuông tại M
=>\(\widehat{DMF}=90^0\)
Bài 3:
a: Xét ΔABM và ΔACN có
AB=AC
góc ABM=góc ACN
BM=CN
Do đó: ΔABM=ΔACN
Suy ra: AM=AN
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc BAH=góc CAK
Do đó; ΔAHB=ΔAKC
Suy ra: AH=AK và BH=CK
c: Xét ΔHBM vuông tại H và ΔKCN vuông tại K có
MB=CN
góc M=góc N
Do đó ΔHBM=ΔKCN
Suy ra: góc HBM=góc KCN
=>góc OBC=góc OCB
hay ΔOBC can tại O
Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
=> BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE.
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
=>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
(Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/
(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
=> ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).