K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2021

127^2; 999^2; 33^4;17^10;52^51

a) Xét các số có các chữ số tận cùng lần lượt là 0 ; 1 ; 2 ; 3 ; ... ; 9 và lấy các con số cụ thể là 0 ; 1 ; 2 ; .... ; 9

Ta có :

02 = 0 

12 = 1

22 = 4

32 = 9

42 = 16

52 = 25

62 = 36

72 = 49

82 = 64

92 = 81

Qua đó ta thấy 1 số chính phương không thể có chữ số tận cùng là 2 ; 3 ; 7 và 8

b) Vì 1262 có chữ số tận cùng là 6

=> 1262 + 1 có chữ số tận cùng là 7 ( không phải số chính phương )

Ta có 10012 có chữ số tận cùng là 1

=> 10012 - 3 có chữ số tận cùng là 8 ( không phải số chính phương )

Ta có 112 và 113 đều có chữ số tận cùng là 1 

=> 11 + 112 + 113 có chữ số tận cùng là 3 ( không là số chính phương )

Ta có 1010 có chữ số tận cùng là 0

=> 1010 + 7 có chữ số tận cùng là 7 ( không à số chính phương )

Ta có 5151 có chữ số tận cùng là 1

=> 5151 + 1 có chữ số tận cùng là 2 ( không là số chính phương )

14 tháng 7 2016

a) A = 3 + 32 + 33 + ... + 320

Do các lũy thừa của 3 từ 32 trở đi đều chia hết cho 9 => 32; 33; ...; 320 đều chia hết cho 9

=> 3+ 33 + ... + 320 chia hết cho 9

Mà 3 chia hết cho 3 nhưng không chia hết cho 9

=> A chia hết cho 3 nhưng không chia hết cho 9, không là số chính phương

Câu b tương tự

22 tháng 1 2020

Kiến thức: một số chính phương là một số chia hết cho 4 hoặc chia 4 dư 1

Bài giải

a) A = 3 + 32 + 33 + 34 +...+ 319 + 320

    A = (3 + 32) + (33 + 34) +...+ (319 + 320)

    A = (3.1 + 3.3) + (33.1 + 33.3) +...+ (319.1 + 319.3)

    A = [3.(1 + 3)] + [33.(1 + 3)] +...+ [319.(1 + 3)]

    A = 3.4 + 33.4 +...+ 319.4

    A = (3 + 33 +...+ 319).4 chia hết cho 4

Vì A chia hết cho 4

Suy ra A là một số chính phương

b) B = 11 + 112 + 113

    B = 11 + (112 + 113)

    B = 11 + (112.1 + 112.11)

    B = 11 + [112.(1 + 11)]

    B = 11 + 112.12

Vì 112.12 chia hết cho 4

và 11 chia 4 dư 3

Nên B không phải là một số chính phương

Vậy B không phải là một số chính phương

27 tháng 12 2020

a) A = 3 + 32 + 33 + ... + 320

Các lũy thừa của 3 từ 32 trở đi đều chia hết cho 9

=> 32; 33; ...; 320  chia hết cho 9

=> 3+ 33 + ... + 320 chia hết cho 9

Mà 3 chia hết cho 3 nhưng không chia hết cho 9

=> A chia hết cho 3 nhưng không chia hết cho 9, không là số chính phương

Câu b tương tự

Ta có :

11 + 112 +113= 1463

Mà 382 = 1444

392=1521

Lại có 1444 < 1463 < 1521

38và 39 là 2 số chính phương liên tiếp

=> B ko là số chính phương

+) B chia hết cho 11 vì mọi số hạng của B chia hết cho 11

+) 112;113 chia hết cho 112

Mặt khác 11 không chia hết cho 112

=> B không chia hết cho 112

Vì B chia hết cho 11 ( số nguyên tố ) mà không chia hết cho 112 nên B không phải là số nguyên tố