CMR có vô số phân số nằm giữa 2 phân số \(\frac{a}{m}\)và\(\frac{b}{m}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(C=\frac{m^3+3m^2+2m+5}{m\left(m+1\right)\left(m+2\right)+6}\)
\(C=\frac{m^3+2m^2+m^2+2m+5}{m\left(m+1\right)\left(m+2\right)+6}\)
\(C=\frac{m^2.\left(m+2\right)+m.\left(m+2\right)+5}{m\left(m+1\right)\left(m+2\right)+6}\)
\(C=\frac{\left(m+2\right).\left(m^2+m\right)+5}{m\left(m+1\right)\left(m+2\right)+6}\)
\(C=\frac{\left(m+2\right).m.\left(m+1\right)+5}{m\left(m+1\right)\left(m+2\right)+6}=\frac{a}{a+1}\)
Gọi d = ƯCLN(a; a + 1) (d \(\in\) N*)
\(\Rightarrow\begin{cases}a⋮d\\a+1⋮d\end{cases}\) \(\Rightarrow\left(a+1\right)-a⋮d\)
\(\Rightarrow1⋮d\)
Mà d \(\in\) N* => d = 1
=> ƯCLN(a; a + 1) = 1
=> C là phân số tối giản (đpcm)
b) Ta thấy: m.(m + 1).(m + 2) là tích 3 số nguyên liên tiếp nên\(m\left(m+1\right)\left(m+2\right)⋮3\)
Mà \(5⋮̸3\); \(6⋮3\)
\(\Rightarrow\begin{cases}\left(m+2\right).m.\left(m+1\right)+5⋮̸3\\m\left(m+1\right)\left(m+2\right)+6⋮3\end{cases}\)
Như vậy, đến khi tối giản, phân số C vẫn có tử \(⋮3;\ne2;5\) nên phân số C viết được dưới dạng số thập phân vô hạn tuần hoàn.
a: \(C=\dfrac{m\left(m^2+3m+2\right)+5}{m\left(m+1\right)\left(m+2\right)+5}=\dfrac{m\left(m+1\right)\left(m+2\right)+5}{m\left(m+1\right)\left(m+2\right)+5}=1\)
Do đó: C là phân số tối giản
b: Phân số C=1/1 được viết dưới dạng là số thập phân hữu hạn
a) \(A=\frac{m^3+3m^2+2m+5}{m^3+3m^2+2m+6}\) m thuộc N
Với m thuộc N thì: m3 + 3m2 + 2m + 5; m3 + 3m2 + 2m + 6 là 2 số tự nhiên liên tiếp nên chúng nguyên tố cùng nhau, hay
U (m3 + 3m2 + 2m + 5; m3 + 3m2 + 2m + 6) = 1
hay A là phân số tối giản.
b) \(A=\frac{m^3+3m^2+2m+5}{m^3+3m^2+2m+6}=1-\frac{1}{m^3+3m^2+2m+6}=1-\frac{1}{m\left(m+1\right)\left(m+2\right)+6}\)
m(m+1)(m+2) là tích của 3 số tự nhiên liên tiếp nên chia hết cho 6.
=> m(m+1)(m+2) + 6 chia hết cho 6.
mà 1 chia 6 là số TP vô hạn tuần hoàn.
=> A là số TP vô hạn tuần hoàn.
<br class="Apple-interchange-newline"><div id="inner-editor"></div>A=m3+3m2+2m+5m3+3m2+2m+6 m thuộc N
Với m thuộc N thì: m3 + 3m2 + 2m + 5; m3 + 3m2 + 2m + 6 là 2 số tự nhiên liên tiếp nên chúng nguyên tố cùng nhau, hay
U (m3 + 3m2 + 2m + 5; m3 + 3m2 + 2m + 6) = 1
hay A là phân số tối giản.
a) Theo đề bài ta có x = \(\frac{a}{m}\), y = \(\frac{b}{m}\) (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = \(\frac{2a}{2m}\), y = \(\frac{2b}{2m}\); z = \(\frac{a+b}{2m}\)
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) suy ra x < y < z
hoặc tham khảo ở http://lazi.vn/edu/exercise/gia-su-x-a-m-y-b-m-a-b-m-z-b-0-va-x-y-hay-chung-to-rang-neu-chon-z-a-b-2m-thi-ta-co-x-z-y
b) Ta có:
\(\frac{1}{2}< \frac{2}{2}< \frac{3}{2}< \frac{4}{2}< \frac{5}{2}\)
\(\Rightarrow\) 3 phân số nằm giữa \(\frac{1}{2}\) và \(\frac{5}{2}\) là \(\frac{2}{2};\frac{3}{2};\frac{4}{2}\)
a ) \(A=\frac{m^3+3m^2+2m+5}{m\left(m+1\right)\left(m+2\right)+6}=\frac{m\left(m+1\right)\left(m+2\right)+5}{m\left(m+1\right)\left(m+2\right)+6}\)
Vì m(m + 1)(m + 2) + 5 và m(m + 1)(m + 2) + 6 là hai số tự nhiên liên tiếp nên chúng là NT cùng nhau hay A là phân số tối giản
b ) Vì m(m + 1)(m + 2) luôn chia hết cho 3 ( vì là tích 3 số tự nhiên liên tiếp )
6 chia hết cho 3
=> m(m + 1)(m + 2) + 6 chia hết cho 3
Mà theo a ) A là phân số tối giản
\(\Rightarrow A=\frac{m\left(m+1\right)\left(m+2\right)+5}{m\left(m+1\right)\left(m+2\right)+6}\)
là số thập phân vô hạn tuần hoàn
nếu a=b => ko có số nào nằm giửa a và b
nếu a<b
mà a âm, b dương
=> phân số nằm giửa là 0/m....o/n...o/y..vv
mà a dương b dương
=> phân số nằm giứa a và b là a/m+(b/m-....mà bé hơn a/m)
..... tương tự