Chứng minh rằng abab : ab = 101
Ai nhanh mà đk mình tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giờ mình giải cho bạn luôn đc ko, bạn có cần nữa ko để mình biết mình giải cho
Ta có: ab x aba = abab
ab x aba = ab x 100 + ab
ab x aba = ab x (100 + 1)
ab x aba = ab x 101
=> aba = 101
=> a = 1; b = 0
Tích cho chụy đó nha
có (n+2003^2004)
nếu n là số lẻ thì(n+2003^2004) là số chẵn
nếu n là số chẵn thì(n+2003^2004) là số lẻ
có (n+2003^2004)
nếu n là số lẻ thì(n+2003^2004) là số lẻ
nếu n là số chẵn thì(n+2003^2004) là số chẵn
chẵn x lẻ =chẵn
lẻ x chẵn=chẵn
=>(n+2003^2004)x(n+2004^2005) chia hết cho 2
+ Ta có : abab = ab x 100 + ab = ab x 101
Vì ab < 100 và 101 là số nguyên tố => ab x 101 không thể là số chính phương
+ Ta có : abcabc = abc x 1000 + abc = abc x 1001
Vì abc < 1000 và 1001 là số nguyên tố => abc x 1001 không thể là số chính phương
Vậy ta có điều phải chứng minh :))
Số nguyên âm lớn nhất là -1, số liền trước là số nhỏ hơn -1 là số nguyên âm
Ta có: A là 1 số nguyên âm.Giả sử A=-n(n thuộc N)
=> Số liền trước của A là:
-n-1=-(n+1)
Mà n là số tự nhiên nên n+1 cũng là số tự nhiên
=>-(n+1) là số nguyên âm
Vậy nếu A là 1 số nguyên âm thì số liền trước của A cũng là số nguyên âm
\(C=2+2^2+2^3+...+2^{99}+2^{100}\)
\(C=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(C=2.\left(1+2+2^2+2^3+2^4\right)+...+2^{96}.\left(1+2+2^2+2^3+2^4\right)\)
\(C=2.31+...+2^{96}.31\)
\(\Rightarrow C⋮31\)
Học tốt nha!!!
Ta có : \(C=2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+...+2^{97}+2^{98}+2^{99}+2^{100}\)
\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=\left(2+2^2+2^3+2^4\right)+2^4.\left(2+2^2+2^3+2^4\right)+...+2^{96}.\left(2+2^2+2^3+2^4\right)\)
\(=62+2^4.62+....+2^{96}.62\)
\(=62.\left(1+2^4+...+2^{96}\right)\)
\(=31.2.\left(1+2^2+....+2^{96}\right)⋮31\)
\(\Rightarrow C⋮31\left(\text{ĐPCM}\right)\)
1) cm: abab chia hết cho 101
Ta có : ab . 101 = ab . ( 100 + 1) = ab00 + ab = abab
=> abab chia hết cho 101 ( not 11)
2) ta có: aaabbb = aaa.1000+ bbb
= a.111.1000 + b.111
= a.37.3.1000+ b.37.3
= 37(3000a+ 3b) chia hết cho 37
3)
Ta có: abcabc
= abc. 1000 + abc
= abc. 1001
= abc. 143. 7
= abc . 11 . 13. 7 chia hết cho 7; 11; 13
4) Ta có: ababab = abab.100+ ab
= (ab.100 + ab) .100+ab
= ab.10000+ ab.100 + ab
= ab . 10101
=> ababab chia hết cho 10101
5)
abab - baba = a .1000 + b.100 + a.10 + b - (b .1000 + a.100 + b.10 + a)
= a .1000 + b.100 + a.10 + b - b .1000 - a.100 - b.10 - a
= a . 909 + b . (-909)
= a . 909 - b . 909
= a . 9 . 101 - b . 9 . 101
= 9 . (a . 101 - b . 101) ⋮ 9
abab hay abab
Ta có : ab x 101 = ab x ( 100 +1 ) = ab x 100 + ab = ab00 + ab = abab
vậy abab + ab = 101