Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
lg
a)C=3+3^2+3^3+...+3^100
=(3+3^2+3^3+3^4)+...+(3^96+3^97+3^98+3^99+3^100)
=(3.1+3.3+3.3^2+3.3^3)+...+(3^96.1+3^96.3+3^96.3^2+3^96.3^3)
=3.(1+3+3^2+3^3)+...+3^96.(1+3+3^2+3^3)
=3.40+...+3^96.40
=40.(3+...+3^96) chia hết cho 40
=>C chia hết cho 40
Vậy C chia hết cho 40
phần b làm tương tự
a, sai đề
b,Ta có :
C=2+2^2+2^3+2^4+2^5...+2^96+2^97+2^98+2^99+2^100
= (2+2^2+2^3+2^4+2^5)+...+(2^96+2^97+2^98+2^99+2^100)
= (2.1+2.2+2.2^2+2.2^3+2.2^4)+...+(2^96.1+2^96.2+2^96.2^2+2^96.2^3+2^96.2^4)
=2. (1+2+2^2+2^3+2^4) +...+2^96.(1+2+2^2+2^3+2^4)
=2.31+...+2^96.31
=31. (2+...+2^96) chia hết cho 31
=>C chia hết cho 31
Phần a:
Có 100 số tự nhiên chia làm 20 nhóm từ trái sang phải mỗi nhóm năm số.
\(C=2.\left(1+2+4+8+16\right)+2^6.\left(1+2+4+8+16\right)+...+2^{96}.\left(1+2+4+8+16\right)\)
\(C=2.31+2^6.31+2^{11}.31+...+2^{96}.31\)
=> C chia hết cho 31.
Chúc em học tốt^^
\(2.C=2^2+2^3+....+2^{101}\)
\(=>2C-C=C=2^2-2^2+2^3-2^3+....+2^{100}-2^{100}+2^{101}-2\)
\(C=2^{101}-2\)
Do đó 2x-1=101
=>x=51
Chúc em học tốt^^
Ta có: \(C=2+2^2+2^3+2^4+....+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+.....+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2.\left(1+2+2^2+2^3+2^4\right)+....+2^{96}.\left(1+2+2^2+2^3+2^4\right)\)
\(=2.31+...+2^{96}.31\)
\(=31.\left(2+....+2^{96}\right)⋮31\)
Vậy C chia hết cho 31
a)\(C=2+2^2+2^3+....+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+2^5\left(2+2^2+2^3+2^4+2^5\right)+...+2^{95}\left(2+2^2+2^3+2^4+2^5\right)\)
\(=62+2^5.62+...+2^{95}.62=62\left(1+2^5+...+2^{95}\right)=31.2\left(1+2^5+....+2^{95}\right)⋮31\)
\(\Rightarrow C⋮31\)
=>đccm
\(C=2+2^2+2^3+...+2^{99}+2^{100}\)
\(C=\left(2+2^2+2^3+2^4+2^5\right)+....+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(C=2.\left(1+2+2^2+2^3+2^4\right)+....+2^{96}.\left(1+2+2^2+2^3+2^4\right)\)
\(C=31.2+.....+2^{96}.31=31.\left(2+....+2^{96}\right)⋮31\)
Suy ra \(C⋮31\)
b) Ta có \(2.C=2^2+2^3+2^4+....+2^{99}+2^{100}+2^{101}\)
Suy ra \(2.C-C=2^{101}-2\)hay \(C=2^{101}-2\)
Khi đó \(2^{2x-1}-2=2^{101}-2\)
\(\Rightarrow2^{2x-1}=2^{101}\)
\(\Rightarrow2x-1=101\Rightarrow2x=100\Rightarrow x=50\)
Vậy x = 50
Chứng minh rằng:
\(S_1=2+2^2+2^3+2^4+...+2^{99}+2^{100}\text{ }chia\text{ }hết\text{ }cho\text{ }31\)
\(S=2+2^2+2^3+...+2^{100}\)
lập \(2S=2\left(2+2^2+2^3+...+2^{100}\right)\)
\(2S=2^2+2^3+...+2^{101}\)
ta lấy \(2S-S\)
\(2S-S\) \(=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(1+2+2^2+2^3+...+2^{100}\right)\)
\(S=2^{101}-\left(1+2\right)\)
vì S là số lẻ và có 31:31
\(\Rightarrow\) \(S_1:31\)
\(C=2+2^2+2^3+...+2^{99}+2^{100}\)
\(C=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(C=2.\left(1+2+2^2+2^3+2^4\right)+...+2^{96}.\left(1+2+2^2+2^3+2^4\right)\)
\(C=2.31+...+2^{96}.31\)
\(\Rightarrow C⋮31\)
Học tốt nha!!!
Ta có : \(C=2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+...+2^{97}+2^{98}+2^{99}+2^{100}\)
\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=\left(2+2^2+2^3+2^4\right)+2^4.\left(2+2^2+2^3+2^4\right)+...+2^{96}.\left(2+2^2+2^3+2^4\right)\)
\(=62+2^4.62+....+2^{96}.62\)
\(=62.\left(1+2^4+...+2^{96}\right)\)
\(=31.2.\left(1+2^2+....+2^{96}\right)⋮31\)
\(\Rightarrow C⋮31\left(\text{ĐPCM}\right)\)